NBUT 1457 B - Sona

本文介绍了一种用于离散化并处理立方运算的高效算法,通过优化数据结构和排序策略,实现复杂操作的快速执行。具体包括初始化、比较节点、计算最大公约数、主循环处理及答案生成等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

同小Z的袜子,只是需要离散化,平方变成了立方

//#include<bits/stdc++.h>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#define N 100010
#define LL long long

using namespace std;
struct node
{
    int l,r,id;
};

int n,m,t;
int pos[N],c[N],a[N];
LL s[N],ans[N];
node q[N];

void init()
{
    memset(s,0,sizeof(s));
    int unit=int(sqrt(n));
    for (int i=1;i<=n;i++)
        if (i%unit==0) pos[i]=i/unit; else pos[i]=i/unit+1;
}

bool cmp(node a, node b)
{
    if (pos[a.l]==pos[b.l]) return a.r<b.r;
    else return pos[a.l]<pos[b.l];
}

LL gcd(LL a, LL b)
{
    if (b==0) return a;
    return gcd(b,a%b);
}

int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        init();
        for (int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            c[i]=a[i];
        }
        sort(a+1,a+n+1);
        t=unique(a+1,a+n+1)-a-1;
        for (int i=1;i<=n;i++) c[i]=lower_bound(a+1,a+t+1,c[i])-a;
        scanf("%d",&m);
        for (int i=1;i<=m;i++)
        {
            scanf("%d%d",&q[i].l,&q[i].r);
            q[i].id=i;
        }
        sort(q+1,q+m+1,cmp);
        int l=1,r=1;
        LL tmp=1;
        s[c[1]]=1;
        for (int i=1;i<=m;i++)
        {
            while(r<q[i].r)
            {
                r++;
                tmp=tmp-s[c[r]]*s[c[r]]*s[c[r]];
                s[c[r]]++;
                tmp=tmp+s[c[r]]*s[c[r]]*s[c[r]];
            }
            while(r>q[i].r)
            {
                tmp=tmp-s[c[r]]*s[c[r]]*s[c[r]];
                s[c[r]]--;
                tmp=tmp+s[c[r]]*s[c[r]]*s[c[r]];
                r--;
            }
            while(l<q[i].l)
            {
                tmp=tmp-s[c[l]]*s[c[l]]*s[c[l]];
                s[c[l]]--;
                tmp=tmp+s[c[l]]*s[c[l]]*s[c[l]];
                l++;
            }
            while(l>q[i].l)
            {
                l--;
                tmp=tmp-s[c[l]]*s[c[l]]*s[c[l]];
                s[c[l]]++;
                tmp=tmp+s[c[l]]*s[c[l]]*s[c[l]];
            }
            ans[q[i].id]=tmp;
        }
        for (int i=1;i<=m;i++) printf("%I64d\n",ans[i]);
    }
    return 0;
}

  

转载于:https://www.cnblogs.com/wzb-hust/p/4863672.html

{ "id": "cmpl-e759f3d8-78e1-11f0-b2b4-1a85109d8f07", "choices": [ { "finish_reason": "stop", "index": 0, "message": { "content": "<think>\nOkay, so I need to figure out how many whole-number divisors there are for the integer given by the expression $ a(2a + b) - 2a^2 + ab $, where $ a $ and $ b $ are different prime numbers greater than 2. Let me start by simplifying the expression step by step.\n\nFirst, let me write down the expression again to make sure I have it right: $ a(2a + b) - 2a^2 + ab $. Let me expand the first term, which is $ a(2a + b) $. If I distribute the $ a $, that becomes $ 2a^2 + ab $. So substituting that back into the original expression, we have:\n\n$ 2a^2 + ab - 2a^2 + ab $.\n\nNow let me combine like terms. The $ 2a^2 $ and $ -2a^2 $ cancel each other out, right? So that leaves me with $ ab + ab $, which is $ 2ab $. So the entire expression simplifies to $ 2ab $. \n\nWait, so the problem is asking for the number of whole-number divisors of $ 2ab $, where $ a $ and $ b $ are different primes greater than 2. Let me confirm that I simplified correctly. Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nExpanding $ a(2a + b) $: $ 2a^2 + ab $. Then subtract $ 2a^2 $, so $ 2a^2 + ab - 2a^2 = ab $. Then add $ ab $, so $ ab + ab = 2ab $. Yes, that seems right. So the expression simplifies to $ 2ab $.\n\nAlright, so now I need to find the number of positive divisors of $ 2ab $. Since $ a $ and $ b $ are primes greater than 2, they are both odd primes. Let me recall that the number of divisors of a number is found by taking its prime factorization, adding one to each of the exponents, and multiplying those together.\n\nSo first, let me write the prime factorization of $ 2ab $. Since 2 is a prime number, and $ a $ and $ b $ are different primes, all three primes are distinct. Therefore, the prime factors of $ 2ab $ are 2, $ a $, and $ b $. Each of these primes has an exponent of 1 in the factorization. So the prime factorization is $ 2^1 \\times a^1 \\times b^1 $.\n\nTo find the number of divisors, I take each exponent (which are all 1s), add 1 to them, and multiply. That would be $ (1 + 1)(1 + 1)(1 + 1) = 2 \\times 2 \\times 2 = 8 $. Therefore, there are 8 positive divisors.\n\nBut let me verify this with an example to make sure I haven't made a mistake. Let me pick specific primes for $ a $ and $ b $. Let's take $ a = 3 $ and $ b = 5 $, which are both primes greater than 2 and different.\n\nCalculating $ 2ab $: $ 2 \\times 3 \\times 5 = 30 $. Now, the divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30. That's 8 divisors. Yep, that matches the calculation. Let me try another example to be safe. Let me take $ a = 5 $, $ b = 7 $. Then $ 2ab = 2 \\times 5 \\times 7 = 70 $. Divisors of 70: 1, 2, 5, 7, 10, 14, 35, 70. Again, 8 divisors. Okay, so that seems consistent.\n\nBut let me think again if there's any possibility that 2 could be equal to $ a $ or $ b $. However, the problem states that $ a $ and $ b $ are primes greater than 2, so they are odd primes. Therefore, 2 is not among them. Therefore, 2, $ a $, and $ b $ are distinct primes. Therefore, the prime factorization is indeed three distinct primes each to the first power, leading to 2×2×2=8 divisors.\n\nBut let me check if there's a case where maybe $ a $ or $ b $ is 2. But the problem says they are greater than 2, so they can't be. Therefore, my reasoning holds.\n\nTherefore, the number of whole-number divisors is 8. Therefore, the answer is 8, which in boxed form is \\boxed{8}.\n\nWait, but let me just check once more. Suppose someone might think that maybe the original expression simplifies differently? Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nFirst term: $ a(2a + b) = 2a^2 + ab $.\n\nSubtracting $ 2a^2 $: $ 2a^2 + ab - 2a^2 = ab $.\n\nAdding $ ab $: $ ab + ab = 2ab $. Yes, that's correct. So the expression simplifies to 2ab. So no issues there.\n\nAlternatively, maybe someone might misread the original problem? Let me check again. The problem says: \"the integer $ a(2a + b) - 2a^2 + ab $\". So yes, that's how it's written. So the steps are correct.\n\nTherefore, I think my answer is correct. The number of divisors is 8.\n\n**Final Answer**\n\\boxed{8}\n</think>\n\nWe are given an expression involving two distinct prime numbers $ a $ and $ b $, both greater than 2, and asked to find the number of whole-number divisors of the integer:\n\n$$\na(2a + b) - 2a^2 + ab\n$$\n\n---\n\n### Step 1: Simplify the Expression\n\nStart by expanding the first term:\n\n$$\na(2a + b) = 2a^2 + ab\n$$\n\nNow substitute this back into the full expression:\n\n$$\n2a^2 + ab - 2a^2 + ab\n$$\n\nSimplify by combining like terms:\n\n- $ 2a^2 - 2a^2 = 0 $\n- $ ab + ab = 2ab $\n\nSo the entire expression simplifies to:\n\n$$\n2ab\n$$\n\n---\n\n### Step 2: Prime Factorization of $ 2ab $\n\nSince $ a $ and $ b $ are distinct prime numbers greater than 2, and 2 is also a prime, the expression $ 2ab $ is the product of three **distinct** primes:\n\n$$\n2ab = 2^1 \\cdot a^1 \\cdot b^1\n$$\n\n---\n\n### Step 3: Count the Number of Divisors\n\nThe number of positive divisors of a number is determined by taking the product of one more than each exponent in its prime factorization.\n\nHere, the exponents are all 1:\n\n$$\n(1 + 1)(1 + 1)(1 + 1) = 2 \\cdot 2 \\cdot 2 = 8\n$$\n\n---\n\n### Final Answer\n\n$$\n\\boxed{8}\n$$", "role": "assistant", "reasoning_content": "" } } ], "created": 1755157209, "model": "Qwen3-32B", "object": "chat.completion", "usage": { "completion_tokens": 1627, "prompt_tokens": 68, "total_tokens": 1695 }, "model_spec": { "api_url": "http://0.0.0.0:9009/v1/chat/completions", "model_id": "Qwen3-32B", "api_key": "EMPTY" }, "answer_id": "answer-1a07ae97260436f698e63d4620d7cff0", "subset_name": "default", "raw_input": { "problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json" }, "origin_prompt": { "data": [ "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?\nPlease reason step by step, and put your final answer within \\boxed{}." ], "system_prompt": null, "raw_input": { "problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json" }, "index": 0 } } 如何判断该题是否回答正确,提取哪个参数核对
08-16
内容概要:该PPT详细介绍了企业架构设计的方法论,涵盖业务架构、数据架构、应用架构和技术架构四大核心模块。首先分析了企业架构现状,包括业务、数据、应用和技术四大架构的内容和关系,明确了企业架构设计的重要性。接着,阐述了新版企业架构总体框架(CSG-EAF 2.0)的形成过程,强调其融合了传统架构设计(TOGAF)和领域驱动设计(DDD)的优势,以适应数字化转型需求。业务架构部分通过梳理企业级和专业级价值流,细化业务能力、流程和对象,确保业务战略的有效落地。数据架构部分则遵循五大原则,确保数据的准确、一致和高效使用。应用架构方面,提出了分层解耦和服务化的设计原则,以提高灵活性和响应速度。最后,技术架构部分围绕技术框架、组件、平台和部署节点进行了详细设计,确保技术架构的稳定性和扩展性。 适合人群:适用于具有一定企业架构设计经验的IT架构师、项目经理和业务分析师,特别是那些希望深入了解如何将企业架构设计与数字化转型相结合的专业人士。 使用场景及目标:①帮助企业和组织梳理业务流程,优化业务能力,实现战略目标;②指导数据管理和应用开发,确保数据的一致性和应用的高效性;③为技术选型和系统部署提供科学依据,确保技术架构的稳定性和扩展性。 阅读建议:此资源内容详尽,涵盖企业架构设计的各个方面。建议读者在学习过程中,结合实际案例进行理解和实践,重点关注各架构模块之间的关联和协同,以便更好地应用于实际工作中。
资 源 简 介 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系, 详 情 说 明 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。 本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系,在此基础上重点分析了一种快速ICA实现算法一FastICA。物质的非线性荧光谱信号可以看成是由多个相互独立的源信号组合成的混合信号,而这些独立的源信号可以看成是光谱的特征信号。为了更好的了解光谱信号的特征,本文利用独立分量分析的思想和方法,提出了利用FastICA算法提取光谱信号的特征的方案,并进行了详细的仿真实验。 此外,我们还进行了进一步的研究,探索了其他可能的ICA应用领域,如音乐信号处理、图像处理以及金融数据分析等。通过在这些领域中的实验和应用,我们发现ICA在提取信号特征、降噪和信号分离等方面具有广泛的潜力和应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值