#Leetcode# 63. Unique Paths II

本文探讨了LeetCode上独特路径II问题的算法解决方案,通过动态规划方法,在存在障碍物的网格中寻找从起点到达终点的所有可能路径数量。特别关注了如何处理障碍物对路径的影响,提供了一种高效的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://leetcode.com/problems/unique-paths-ii/

 

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

Note: m and n will be at most 100.

Example 1:

Input:
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right

代码:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size(), n = obstacleGrid[0].size();
        if(obstacleGrid[0][0] == 1) return 0;
        vector<int> dp(n, 0);
        dp[0] = 1;
        for(int i = 0; i < m; i ++) {
            for(int j = 0; j < n; j ++) {
                if(obstacleGrid[i][j] == 1) dp[j] = 0;
                else dp[j] += dp[j - 1];
            }
        }
        return dp[n - 1];
    }
};

  

$m$ 行 $n$ 列真的是写不习惯 这个只多了一个是 $1$ 的时候走不动 那就到该点的时候 $dp$ 设成 $0$ 就好了 本来想用深搜搜路径数量但是。。。很难受写错了。。。晚上回去再好好撸 $dfs$ 吧  

转载于:https://www.cnblogs.com/zlrrrr/p/10003481.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值