sklearn中的朴素贝叶斯模型及其应用

本文探讨了朴素贝叶斯分类器在iris数据集上的应用,对比了高斯、伯努利及多项式三种类型分类器的性能,并通过交叉验证评估了其准确性。此外,还介绍了如何使用sklearn库进行垃圾邮件分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.使用朴素贝叶斯模型对iris数据集进行花分类

尝试使用3种不同类型的朴素贝叶斯:

高斯分布型

多项式型

伯努利型

#高斯分布型
from sklearn import datasets
iris=datasets.load_iris()
from sklearn.naive_bayes import GaussianNB
gnb=GaussianNB()
pred=gnb.fit(iris.data,iris.target)
y_pred=gnb.predict(iris.data)
print(iris.data.shape[0],(iris.target != y_pred).sum())

 

#伯努利型
from sklearn import datasets
iris = datasets.load_iris()
from sklearn.naive_bayes import BernoulliNB
gnb = BernoulliNB()
pred = gnb.fit(iris.data, iris.target)
y_pred = pred.predict(iris.data)
print(iris.data.shape[0], (iris.target != y_pred).sum())

#多项式型
from sklearn import datasets
iris = datasets.load_iris()
from sklearn.naive_bayes import MultinomialNB
gnb =  MultinomialNB()
pred = gnb.fit(iris.data, iris.target)
y_pred = pred.predict(iris.data)
print(iris.data.shape[0],(iris.target !=y_pred).sum())

 

2.使用sklearn.model_selection.cross_val_score(),对模型进行验证.

#高斯分布型的准确率
from sklearn.model_selection import cross_val_score
NB_model=GaussianNB()
sco=cross_val_score(NB_model,iris.data,iris.target,cv=10)
print("准确率:%.3f"%sco.mean())

#伯努利型的准确率
from sklearn.model_selection import cross_val_score
NB_model=BernoulliNB()
sco=cross_val_score(NB_model,iris.data,iris.target,cv=10)
print("准确率:%.3f"%sco.mean())

#多项式型的准确率
from sklearn.model_selection import cross_val_score
NB_model=MultinomialNB()
sco=cross_val_score(NB_model,iris.data,iris.target,cv=10)
print("准确率:%.3f"%sco.mean())

 

3.垃圾邮件分类.

import csv
file_path=r'C:\Users\Administrator\Desktop\SMSSpamCollectionjsn.txt'
sms=open(file_path,'r',encoding='utf-8')
sms_data=[]
sms_label=[]
csv_reader=csv.reader(sms,delimiter='\t')
for line in csv_reader:
    sms_label.append(line[0])
sms.close()
print(len(sms_label))
sms_label

 

转载于:https://www.cnblogs.com/a1234tt/p/10019467.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值