if __name__ == "__main__":
#定义衣服尺寸的映射关系
size_mapping = {"S":1,"M":2,"X":3,"XL":4}
#定义一个DataFrame数据
data = pd.DataFrame([
["green","S",100],
["blue", "M", 110],
["red", "X", 120],
["black", "XL", 130]
])
#设置列名
data.columns = ["color","size","price"]
#对size列的类别数据进行映射
data["size"] = data["size"].map(size_mapping)
===================================================
SELECT * FROM (
SELECT name
, ROW_NUMBER() OVER (PARTITION BY userid ORDER BY quantity) AS rn
FROM (select * from sales_month_user
limit 100) tmp1
) tmp
Bo 17:24:01
SELECT * FROM (
SELECT
userid,
industry,
name,
ROW_NUMBER() OVER (PARTITION BY userid ORDER BY quantity DESC) AS rn
FROM from sales_month_user
) tmp
WHERE rn < 10;
这个可能可以用来给推荐商品排名
SELECT name
, ROW_NUMBER() OVER (PARTITION BY userid ORDER BY quantity) AS rn
FROM (select * from sales_month_user
limit 100) tmp1
) tmp
Bo 17:24:01
SELECT * FROM (
SELECT
userid,
industry,
name,
ROW_NUMBER() OVER (PARTITION BY userid ORDER BY quantity DESC) AS rn
FROM from sales_month_user
) tmp
WHERE rn < 10;
这个可能可以用来给推荐商品排名
1 import pymssql 2 3 conn = pymssql.connect(host=host, port=port ,user=username, password=password, database=database) 4 df = pd.read_sql("select * from table_name",con=conn) 5 conn.close()
from sqlalchemy import create_engine
engine = create_engine('mssql+pyodbc://scott:tiger@mydsn')
df.to_sql('test', engine)
#python 使用pandas写入sql server只能使用
from sqlalchemy import create_engine
engine = create_engine('mssql+pymssql://aiuser:Zhzj36ai!@crm.db.pospal.cn:14314/BigData?charset=utf8')
df = pd.read_csv('viptype_description.csv', encoding='utf8')
df.to_sql(name="viptype_module", con=engine, if_exists='append', index=False)
并且,df的列名,要和表的列名一致
而且数据类型、长度也要一致
一般来说,在数据库里建好表,然后进行append,如果直接replace的话,数据类型可能无法指定