[再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)...

本文通过级数展开的方法,证明了对于所有的正实数x,不等式(\left(1+\frac{1}

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$

 

证明 (from Hansschwarzkopf): 对任何$x>0$, 有 \[x\ln\left(1+\frac{1}{x}\right)=x\ln\frac{1+\frac{1}{2x+1}}{1-\frac{1}{2x+1}} =2x\left(\frac{1}{2x+1}+\frac{1}{3(2x+1)^3}+\ldots\right)>\frac{2x}{2x+1} >\ln \frac{2ex}{2x+1},\] 故 \[\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.\]

转载于:https://www.cnblogs.com/zhangzujin/p/4183268.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值