64.Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
[1,3,1],
[1,5,1],
[4,2,1]]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

class Solution:
    def minPathSum(self, grid):
        """
        :type grid: List[List[int]]
        :rtype: int
        """
        m,n = len(grid),len(grid[0])
        dp = [[0 for i in range(n)] for j in range(m)]
        for i in range(m):
            for j in range(n):
                if i==0 and j==0:
                    dp[i][j] = grid[i][j]
                    continue
                if i==0:
                    dp[i][j] = dp[i][j-1] + grid[i][j]
                    continue
                if j==0:
                    dp[i][j] = dp[i-1][j] + grid[i][j]
                    continue
                dp[i][j] = min(dp[i-1][j],dp[i][j-1])+grid[i][j]
        return dp[-1][-1]

转载于:https://www.cnblogs.com/bernieloveslife/p/9763056.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值