相关算子和卷积

1.相关算子(Correlation Operator)

定义:image, 即image ,其中h称为相关核(Kernel).

步骤:

1)滑动核,使其中心位于输入图像g的(i,j)像素上

2)利用上式求和,得到输出图像的(i,j)像素值

3)充分上面操纵,直到求出输出图像的所有像素值

 

  例:

A = [17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9]  

h = [8 1 6

3 5 7

4 9 2]

计算输出图像的(2,4)元素=image

image

Matlab 函数:imfilter(A,h)

 

2.卷积算子(Convolution)

定义:imageimage ,其中

步骤:

1)将核围绕中心旋转180度

2)滑动核,使其中心位于输入图像g的(i,j)像素上

3)利用上式求和,得到输出图像的(i,j)像素值

4)充分上面操纵,直到求出输出图像的所有像素值

例:计算输出图像的(2,4)元素=image

image

Matlab 函数:Matlab 函数:imfilter(A,h,'conv')% imfilter默认是相关算子,因此当进行卷积计算时需要传入参数'conv'

3.边缘效应

当对图像边缘的进行滤波时,核的一部分会位于图像边缘外面。

image

常用的策略包括:

1)使用常数填充:imfilter默认用0填充,这会造成处理后的图像边缘是黑色的。

2)复制边缘像素:I3 = imfilter(I,h,'replicate');

image

 

4.常用滤波

fspecial函数可以生成几种定义好的滤波器的相关算子的核。

例:unsharp masking 滤波

?
1
2
3
4
5
I = imread( 'moon.tif' );
h = fspecial( 'unsharp' );
I2 = imfilter(I,h);
imshow(I), title( 'Original Image' )
figure, imshow(I2), title( 'Filtered Image' )

转载于:https://www.cnblogs.com/linyuanzhou/p/4846499.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值