投影矩阵和最小二乘

一个最小二乘法的例子:

 

三个点分别是 $(1,1), (2,2),(3,2)$. 对这三个点进行回归分析,假设以下的方程:

$$ y = C + D t$$

那么有矩阵运算:

$$\begin{bmatrix} 1& 1 \\ 1 & 2 \\1 & 3 \end{bmatrix}\begin{bmatrix} C\\D \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\2 \end{bmatrix}$$

显然这个方程是不可解的。最小二乘法求解最优值的方案在于

$$\Vert Ax-b \Vert ^2 = \Vert e \Vert ^2 = e^2_1+e^2_2+e^2_3$$


At last, if we have the matrix $A$ which has independent columns, then $A^TA$ is invertible. Or we can say, suppose $A^TAx = 0$, $x$ must be $0$.

Proof:  $$x^TA^TAx = 0  \to (Ax)^TAx = 0$$

then we have $Ax=0$. Considering that $A$ has independent columns, $x$ must be $0$.

 

转载于:https://www.cnblogs.com/sybear/p/10834658.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值