使用pytorch进行线性回归

本文通过一组具体数据,使用PyTorch实现了一个简单的线性回归模型,并展示了完整的训练过程及模型效果。从数据准备到模型搭建、训练直至最终可视化结果,详细介绍了每个步骤的具体操作。

x,y
3.3,1.7 4.4,2.76 5.5,2.09 6.71,3.19 6.93,1.694 4.168,1.573 9.779,3.366 6.182,2.596 7.59,2.53 2.167,1.221 7.042,2.827 10.791,3.465 5.313,1.65 7.997,2.904 3.1,1.3

以上是欲拟合数据

import torch
from torch import nn, optim
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

d = pd.read_csv("data.csv")
x_train = np.array(d.x[:],dtype=np.float32).reshape(15,1)

print(x_train)
y_train=np.array(d.y[:],dtype=np.float32).reshape(15,1)
print(y_train)

x_train = torch.from_numpy(x_train)

y_train = torch.from_numpy(y_train)


# Linear Regression Model
class LinearRegression(nn.Module):
    def __init__(self):
        super(LinearRegression, self).__init__()
        self.linear = nn.Linear(1, 1)  # input and output is 1 dimension

    def forward(self, x):
        out = self.linear(x)
        return out


model = LinearRegression()
# 定义loss和优化函数
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=1e-4)

# 开始训练
num_epochs = 1000
for epoch in range(num_epochs):
    inputs = Variable(x_train)
    target = Variable(y_train)

    # forward
    out = model(inputs)
    loss = criterion(out, target)
    # backward
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if (epoch+1) % 20 == 0:
        print('Epoch[{}/{}], loss: {:.6f}'
              .format(epoch+1, num_epochs, loss.data[0]))

model.eval()
predict = model(Variable(x_train))
predict = predict.data.numpy()
plt.plot(x_train.numpy(), y_train.numpy(), 'ro', label='Original data')
plt.plot(x_train.numpy(), predict, label='Fitting Line')
# 显示图例
plt.legend()
plt.show()

# 保存模型
torch.save(model.state_dict(), './linear.pth')

  

 

转载于:https://www.cnblogs.com/dudu1992/p/8980249.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值