Condition

深入理解Condition
本文详细解析了Java并发包中Condition的使用方法,对比了与Object类wait、notify的区别,包括响应中断、等待超时机制等特性,并通过实例展示了如何利用Condition实现线程间的协作,如多个等待队列和两线程交替打印。

  Condition是为了替代Object的wait notify而设计出来的,其用法基本一致。

  • 都需要先获得锁,然后在锁对象上建立等待队列,把调用wait的线程加入等待队列。
  • 调用wait await后都会释放锁。
  • 都支持等待超时机制。
  • Condition可响应中断也可以不响应中断(awaitUninterruptibly),wait一定响应中断。
  • 同一个lock可以有多个Condition队列,但同一个synchronized只有一个等待队列。

简单使用

  主线程调用notify后子线程继续执行await后的内容。  

package Condi;

import Semaphore.Pool.Run;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

public class testCondition implements Runnable {
    private static ReentrantLock lock = new ReentrantLock();
    private static Condition condition = lock.newCondition();



    @Override
    public void run() {
        lock.lock();
        try {
            condition.await();
            System.out.println("等待结束");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    public static void main(String[] args) throws InterruptedException {
        Thread thread = new Thread(new testCondition());
        thread.start();
        Thread.sleep(1000);
        System.out.println(thread.getState());
        lock.lock();
        condition.signal();
        lock.unlock();
    }
}

多个等待队列

   ThreadA ThreadB分别传入不同的Condition,两个Condition都是注册在同一个重入锁上的,在主线程上可以自由的选择只唤醒一个Condition上等待的线程。

package Condi;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

public class ThreadA implements Runnable{
    private  ReentrantLock lock;
    private  Condition condition;

    public ThreadA(ReentrantLock lock, Condition condition) {
        this.lock = lock;
        this.condition = condition;
    }

    @Override
    public void run() {
        lock.lock();
        try {
            System.out.println("线程A获得锁");
            condition.await();
            System.out.println("线程A被唤醒");
            lock.unlock();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }finally {
        }
    }
}
package Condi;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

public class ThreadB implements Runnable{
    private  ReentrantLock lock;
    private  Condition condition;

    public ThreadB(ReentrantLock lock, Condition condition) {
        this.lock = lock;
        this.condition = condition;
    }

    @Override
    public void run() {
        lock.lock();
        try {
            System.out.println("线程B获得锁");
            condition.await();
            System.out.println("线程B被唤醒");
            lock.unlock();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }finally {
        }
    }
}
package Condi;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

public class wakeDifferent {
    public static void main(String[] args) throws InterruptedException {
        ReentrantLock lock = new ReentrantLock();
        Condition conditionA = lock.newCondition();
        Condition conditionB = lock.newCondition();
        Thread threadA = new Thread(new ThreadA(lock,conditionA));
        Thread threadB = new Thread(new ThreadB(lock,conditionB));
        threadA.start();
        threadB.start();

        Thread.sleep(100);
        lock.lock();
        System.out.println("main获得锁");
        conditionB.signal();
        lock.unlock();
    }
}

两个线程交替打印 

  考虑AB两个线程,假如A线程获得了锁,必须保证下次获得锁的线程是B线程,而不能再是A线程,所以必须保证刚刚获得锁的线程不能第二次获得锁。

双等待队列

  thread_1获得锁打印,await进入等待队列,进入等待队列的线程在没有被唤醒之前不能再次竞争锁,所以下一次一定是thread_2获得锁。thread_2获得锁后打印、唤醒thread_1、await后进入等待队列,同样因为awit的线程在被唤醒钱不能竞争锁,所以下一次一定是thread_1获得锁并打印。这样循环下去二者交替打印。

  注意在main里调用thread的顺序要和thread中await的顺序一直,比如在thread_1 thread_2中都是condition1在前condition2在后,所以在mian里调用的顺序也是thread_1在前thread_2在后,否则会发生死锁。  public class printInturn {

private static int cnt=0;

    public static void main(String[] args) {
        ReentrantLock lock = new ReentrantLock();
        Condition condition1 = lock.newCondition();
        Condition condition2 = lock.newCondition();


        Thread thread_1 = new Thread(new Runnable() {
            @Override
            public void run() {
                while (cnt<10) {
                    
                    lock.lock();
                    try {
                        System.out.println("Thread_1    "+cnt);
               cnt++;
condition1.await(); condition2.signal(); }
catch (InterruptedException e) { e.printStackTrace(); }finally { lock.unlock(); } } } }); Thread thread_2 = new Thread(new Runnable() { @Override public void run() { while (cnt<10) { lock.lock(); try { System.out.println("Thread_2 "+cnt);
              cnt++; condition1.signal(); condition2.await(); }
catch (InterruptedException e) { e.printStackTrace(); }finally { lock.unlock(); } } } }); thread_1.start(); thread_2.start(); } }

 

 

转载于:https://www.cnblogs.com/AshOfTime/p/10791842.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值