JUnit展示图形化测试结果

本文介绍了一个使用埃拉托斯特尼筛法的素数生成器类,该类能够生成用户指定范围内的所有素数。通过取消标记所有整数,然后从2开始,找到第一个未被标记的数并标记其所有倍数,重复此过程直到没有更多倍数可标记。最后,将未标记的整数放入结果数组中返回。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

package utils;

/**
 * This class Generates prime numbers up to a user specified
 * maximum. The algorithm used is the Sieve of Eratosthenes.
 * Given an array of integers starting at 2:
 * Find the first uncrossed integer, and cross out all its
 * multiples. Repeat until there are no more multiples
 * in the array.
 */
public class PrimesGenerator {

    private static boolean[] crossedOut;
    private static int[] result;

    public static int[] generatePrimes(int maxValue) {
        if (maxValue < 2) {
            return new int[0];
        } else {
            uncrossIntegersUpTo(maxValue);
            crossOutMultiples();
            putUncrossedIntegerIntoResult();
            return result;
        }
    }

    private static void putUncrossedIntegerIntoResult() {
        result = new int[numberOfUnCrossedIntegers()];
        for (int j = 0, i = 2; i < crossedOut.length; i++) {
            if (notCrossed(i)) {
                result[j++] = i;
            }
        }
    }

    private static int numberOfUnCrossedIntegers() {
        int count = 0;
        for (int i = 2; i < crossedOut.length; i++) {
            if (notCrossed(i)) {
                count++;
            }
        }
        return count;
    }

    private static void crossOutMultiples() {
        int limit = determineIterationLimit();
        for (int i = 2; i < limit; i++) {
            if (notCrossed(i)) {
                crossOutMultiplesOf(i);
            }
        }
    }

    private static int determineIterationLimit() {
        // We cross out all multiples of p; where p is prime.
        // Thus, all crossed out multiples have p and q for
        // factors. If p > sqrt of the size of the array, then
        // q will never be greater than 1. Thus p is the
        // largest prime factor in the array, and is also
        // the iteration limit.

        double iterationLimit = Math.sqrt(crossedOut.length);
        return (int) iterationLimit;
    }

    private static void crossOutMultiplesOf(int i) {
        for (int multiple = 2*i; multiple < crossedOut.length; multiple+=i) {
            crossedOut[multiple] = true;
        }
    }

    private static boolean notCrossed(int i) {
        return crossedOut[i] == false;
    }

    private static void uncrossIntegersUpTo(int maxValue) {
        crossedOut = new boolean[maxValue + 1];
        for (int i = 2; i < crossedOut.length; i++) {
            crossedOut[i] = false;
        }
    }
}
package test;

import junit.framework.*;
import utils.PrimesGenerator;

public class TestPrimesGenerator extends TestCase {
    public static void main(String[] args) {
        junit.swingui.TestRunner.main(
                new String[]{"test.TestPrimesGenerator"}
        );
    }

    public TestPrimesGenerator(String name) {
        super(name);
    }

    public void testPrimes() {
        int[] nullArray = PrimesGenerator.generatePrimes(0);
        assertEquals(nullArray.length, 0);

        int[] minArray = PrimesGenerator.generatePrimes(2);
        assertEquals(minArray.length, 1);
        assertEquals(minArray[0], 2);

        int[] threeArray = PrimesGenerator.generatePrimes(3);
        assertEquals(threeArray.length, 2);
        assertEquals(threeArray[0], 2);
        assertEquals(threeArray[1], 3);

        int[] centArray = PrimesGenerator.generatePrimes(100);
        assertEquals(centArray.length, 25);
        assertEquals(centArray[24], 97);
    }
}

 

参考:《敏捷软件开发:原则、模式与实践》

 

转载于:https://www.cnblogs.com/starinbrook/p/10494048.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值