7 Container With Most Water_Leetcode

本文探讨了一种经典的计算机科学问题——如何使用O(n)的时间复杂度,而非传统的O(n^2),来解决水壶装水问题。通过分析容器的面积构成,提出了按序枚举宽度并仅考虑从大往小缩小边界的策略,最终实现了高效的算法解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

Note: You may not slant the container.

这题O(n^2)的解法就是基本的暴力法。但是要想出O(n)的解法并不容易(实际上我就想不出来T_T),面试碰到这样难度的新题估计就跪了。

虽然有点悲观,但是解题的思路还是有迹可循的。

container的面积由两个因素组成,一个是高度,一个是宽度。

我们同样采用的是“按序枚举”的思路,高度是不确定的变量,不好枚举,但是宽度则是由1到n-1的确定的量,可以很方便的枚举。

此外,如同上题Candy,这种按序枚举的思路也可以是从左到右,从右往左等。

在想到对宽度进行枚举后,这种枚举有两种,一个是从小往大,另一个是从大往小。

如果我们想从小往大枚举,这种一般必须有dp的规律才能够使解法更优,但是从本题来看,每一个解都只与左右两个index有关,并不包含子问题。所以从小往大的枚举不可行。

那么从大往小枚举,比如3,2,5,4,1。最大的宽度,就是从3到1,这时我们可以算出一个面积。当我们缩小这个宽度,有两种方法,但是实际上只有右区间缩小一个可能得到最优解。为什么呢?因为每次对于左右边界中较小的那一个,当前的宽度都是最宽的,也就是它能达到的最大面积了。

由此我们可以只往一个方向进行左右边界的缩小,最终得到的方法是O(n)的。

Code:

class Solution {
public:
    int maxArea(vector<int> &height) {
        int n = height.size();
        if(n < 2) return 0;
        int res = 0;
        
        int left = 0, right = n-1;
        while(left < right)
        {
            int tmp = min(height[left], height[right]) * (right - left);
            if(tmp > res) res = tmp;
            
            if(height[left] < height[right]) left++;
            else right--;
        }
        return res;
    }
};

  

转载于:https://www.cnblogs.com/avril/p/4029807.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值