51NOD 1227 平均最小公倍数 [杜教筛]

本文提供了一种求解1227平均最小公倍数问题的有效算法,通过数学推导简化了问题,并使用了整除分块等技巧。代码实现了求解过程,包括质数筛法、前缀和计算等步骤。

1227 平均最小公倍数

题意:求\(\frac{1}{n} \sum_{i=1}^n lcm(n,i)\)


和的弱化版?
\[ ans = \frac{1}{2}((\sum_{i=1}^n \sum_{d=1}^{\lfloor \frac{n}{i} \rfloor} d\cdot \varphi(d) ) - \sum_{i=1}^n) \]
\(id\cdot \varphi\)的前缀和,卷上\(id\)就行了

我竟然把整除分块打错了,直接i++,gg

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1664512, U=1664510, mo=1e9+7, inv2 = 500000004, inv6 = 166666668;
inline int read(){
    char c=getchar(); int x=0,f=1;
    while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
    while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
    return x*f;
}

inline void mod(int &x) {if(x>=mo) x-=mo; else if(x<0) x+=mo;}
bool notp[N]; int p[N/10], phi[N], s[N];
void sieve(int n) {
    phi[1]=1; s[1]=1;
    for(int i=2; i<=n; i++) {
        if(!notp[i]) p[++p[0]] = i, phi[i] = i-1;
        for(int j=1; j <= p[0] && i*p[j] <= n; j++) {
            notp[i*p[j]] = 1;
            if(i%p[j] == 0) {phi[i*p[j]] = (ll) phi[i] * p[j] %mo; break;}
            phi[i*p[j]] = (ll) phi[i] * (p[j]-1) %mo;
        }
        mod(s[i] += s[i-1] + (ll) phi[i] * i %mo);
    }
}

namespace ha {
    const int p=1001001;
    struct meow{int ne, val, r;} e[3000];
    int cnt, h[p];
    inline void insert(int x, int val) {
        int u = x%p;
        for(int i=h[u];i;i=e[i].ne) if(e[i].r == x) return;
        e[++cnt] = (meow){h[u], val, x}; h[u] = cnt;
    }
    inline int quer(int x) {
        int u = x%p;
        for(int i=h[u];i;i=e[i].ne) if(e[i].r == x) return e[i].val;
        return -1;
    }
} using ha::insert; using ha::quer;

inline ll sum(ll n) {return n * (n+1) / 2 %mo;}
inline ll sum2(ll n) {return n * (n+1) %mo * (2*n+1) %mo *inv6 %mo;}
int dj_s(int n) { //printf("dj_s %d\n", n);
    if(n <= U) return s[n];
    if(quer(n) != -1) return quer(n);
    int ans = sum2(n), r;
    for(int i=2; i<=n; i=r+1) {
        r = n/(n/i);
        mod(ans -= (ll) (sum(r) - sum(i-1)) * dj_s(n/i) %mo);
    }
    insert(n, ans);
    return ans;
}
int solve(int n) {
    int ans=0, r;
    for(int i=1; i<=n; i=r+1) {
        r = n/(n/i);
        mod(ans += (ll) dj_s(n/i) * (r-i+1) %mo);
    }
    mod(ans += n);
    return (ll) ans * inv2 %mo;
}
int l, r;
int main() {
    freopen("in", "r", stdin);
    sieve(U);
    l=read(); r=read(); 
    int ans = solve(r) - solve(l-1); mod(ans);
    printf("%d", ans);
}

转载于:https://www.cnblogs.com/candy99/p/6720521.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值