POJ 3977

本文介绍了一种解决子集和问题的方法,通过将集合分为两个相等的部分,并为每个部分生成所有可能的子集和,之后使用二分查找来确定最小绝对值的子集和及其元素数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Subset
Time Limit: 30000MS Memory Limit: 65536K
Total Submissions: 1373 Accepted: 228

Description

Given a list of N integers with absolute values no larger than 10 15, find a non empty subset of these numbers which minimizes the absolute value of the sum of its elements. In case there are multiple subsets, choose the one with fewer elements.

Input

The input contains multiple data sets, the first line of each data set contains N <= 35, the number of elements, the next line contains N numbers no larger than 10 15 in absolute value and separated by a single space. The input is terminated with N = 0

Output

For each data set in the input print two integers, the minimum absolute sum and the number of elements in the optimal subset.

Sample Input

1
10
3
20 100 -100
0

Sample Output

10 1
0 2

Source

 
 
把集合分成两个 N / 2的集合,然后生成一种一个集合2 ^ (n - 1)种状态的和,对于另一个集合的所有状态的和 在前一个集合中二分找到一个最接近的
并找到集合元素最小的即是所求答案
 
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <algorithm>
 5 #include <utility>
 6 
 7 using namespace std;
 8 
 9 
10 typedef long long ll;
11 typedef pair<ll,int> pii;
12 
13 
14 const ll INF = (1e17) + 5;
15 const  int MAX = 40;
16 
17 int N;
18 ll w[MAX];
19 pii ps[(1 << 20) + 5];
20 int cal[1 << 20],dx[4] = {-1,-2,0,1};
21 
22 ll Abs(ll x) {
23         return x > 0 ? x : -x;
24 }
25 
26 void init() {
27         for(int s = 0; s < (1 << 20); ++s) {
28                 int sum = 0;
29                 for(int i = 0; i < 20; ++i) {
30                         if(s >> i & 1) ++sum;
31                 }
32                 cal[s] = sum;
33         }
34 }
35 void solve() {
36         int n = N / 2;
37         ll sw = 0;
38         for(int s = 0; s < (1 << n); ++s) {
39                 sw = 0;
40                 for(int j = 0; j < n; ++j) {
41                         if(s >> j & 1) sw += w[j];
42                 }
43                 ps[s] = make_pair(sw,cal[s]);
44         }
45         sort(ps,ps + (1 << n));
46 
47         int n1 = N - n;
48         ll ansv = INF;
49         int anss = N;
50         for(int s = 0; s < (1 << n1); ++s) {
51                 sw = 0;
52                 for(int j = n; j < N; ++j) {
53                         if(s >> (j - n) & 1) sw += w[j];
54                 }
55                 int pos = lower_bound(ps,ps + (1 << n),make_pair(-sw,-1)) - ps;
56                 ll v = INF,t = INF;
57                 for(int i = 0; i < 4; ++i) {
58                         int id = pos + dx[i];
59                         if(id >= 0 && id < (1 << n)
60                            && (ps[id].second || s)) {
61                                 if(Abs(ps[id].first + sw) < t) {
62                                         t = Abs(ps[id].first + sw);
63                                         v = ps[id].first;
64                                 }
65                         }
66                 }
67                 pos = lower_bound(ps,ps + (1 << n),make_pair(v,-1)) - ps;
68                 if(s == 0 && ps[pos].second == 0) ++pos;
69                 if(ansv > Abs(v + sw) || ansv == Abs(v + sw) && anss > cal[s] + ps[pos].second) {
70                         ansv = Abs(v + sw);
71                         anss = cal[s] + ps[pos].second;
72                 }
73         }
74 
75         printf("%I64d %d\n",ansv,anss);
76 }
77 
78 int main()
79 {
80     freopen("sw.in","r",stdin);
81     init();
82     while(~scanf("%d",&N) && N) {
83             for(int i = 0; i < N; ++i) scanf("%I64d",&w[i]);
84             solve();
85     }
86 
87     return 0;
88 }
View Code

 

转载于:https://www.cnblogs.com/hyxsolitude/p/3642053.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值