极光推送 标签和别名设置说明

喜欢交朋友的加:微信号 dwjluck2013

1.获取别名:在极光这个回调方法里面 得到 registrationID 并存储起来 登录的时候会用,

/**
 极光推送 回调
 */
- (void)application:(UIApplication *)application
didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken {
    
    /// Required - 注册 DeviceToken
    [JPUSHService registerDeviceToken:deviceToken];
    // 这个block回调获取registrationID 别名 存储起来 在登录界面传给后台
    [JPUSHService registrationIDCompletionHandler:^(int resCode, NSString *registrationID) {
        if(resCode == 0)
        {
            // iOS10获取registrationID放到这里了, 可以存到缓存里, 用来标识用户单独发送推送
            NSLog(@"registrationID获取成功:%@",registrationID);
//            [[[NSUserDefaults standardUserDefaults] setObject:registrationID forKey:@"registrationID"];
//            [[NSUserDefaults standardUserDefaults] synchronize];]
            [UserModel sharedInstanced].jpushRegistrationID = registrationID;
        }
        else
        {
            NSLog(@"registrationID获取失败,code:%d",resCode);
        }
    }];
}

2.极光推送 标签和别名设置(在登录的时候设置)

- (void)loginBtnClick:(UIButton *)sender{
    NSLog(@"登录");
    // 设置极光推送的标签和别名(标签是一个集合可以包含多个关键词 比如:红的、黄的、绿的)(别名是每个用户唯一的名称可以 根据这个别名给唯一的用户发推送)
    NSMutableSet *set = [[NSMutableSet alloc] initWithObjects:@"HelpYou_1.0",nil, nil]; // 标签
    NSString *registrationIdStr = [UserModel sharedInstanced].jpushRegistrationID; // 别名
    [JPUSHService setTags:set alias:registrationIdStr callbackSelector:@selector(tagsAliasCallback:tags:alias:) object:self];
    //写后接口的时候  调用后台接口 把registrationIdStr传给后台
}
// 极光推送 标签和别名设置成功回调
- (void)tagsAliasCallback:(int)iResCode tags:(NSSet*)tags alias:(NSString*)alias {
    NSLog(@"rescode: %d, \ntags: %@, \nalias: %@\n", iResCode, tags , alias);
}

3.退出登录的时候 可以把标签和别名设置为nil 这样推送的时候就得到不推送的消息了

[JPUSHService setTags:nil alias:nil callbackSelector:@selector(tagsAliasCallback:tags:alias:) object:self];

流程总结:别名在delegate.m极光回调方法中得到(如1步骤代码);在登录的时候传给后台,并调用极光的方法给极光;之后的事就是公司后台用这个别名给极光进行推送了(和我们前台就无关了)

转载于:https://www.cnblogs.com/dujiahong/p/9166379.html

### Pandas 文件格式读写操作教程 #### 1. CSV文件的读取与保存 Pandas 提供了 `read_csv` 方法用于从 CSV 文件中加载数据到 DataFrame 中。同样,也可以使用 `to_csv` 将 DataFrame 数据保存为 CSV 文件。 以下是具体的代码示例: ```python import pandas as pd # 读取CSV文件 df = pd.read_csv('file.csv') # 加载本地CSV文件 [^1] # 保存DataFrame为CSV文件 df.to_csv('output.csv', index=False) # 不保存行索引 [^1] ``` --- #### 2. JSON文件的读取与保存 对于JSON格式的数据,Pandas 支持通过 `read_json` 和 `to_json` 进行读取和存储。无论是本地文件还是远程 URL 都支持。 具体实现如下所示: ```python # 读取本地JSON文件 df = pd.read_json('data.json') # 自动解析为DataFrame对象 [^3] # 从URL读取JSON数据 url = 'https://example.com/data.json' df_url = pd.read_json(url) # 直接从网络地址获取数据 # 保存DataFrame为JSON文件 df.to_json('output.json', orient='records') ``` --- #### 3. Excel文件的读取与保存 针对Excel文件操作Pandas 使用 `read_excel` 来读取 `.xls` 或 `.xlsx` 格式的文件,并提供 `to_excel` 方法导出数据至 Excel 表格。 注意:需要安装额外依赖库 `openpyxl` 或 `xlrd` 才能正常运行这些功能。 ```python # 安装必要模块 (如果尚未安装) !pip install openpyxl xlrd # 读取Excel文件 df_excel = pd.read_excel('file.xlsx', sheet_name='Sheet1') # 导出DataFrame为Excel文件 df.to_excel('output.xlsx', sheet_name='Sheet1', index=False) ``` --- #### 4. SQL数据库的交互 当涉及关系型数据库时,Pandas 可借助 SQLAlchemy 库连接各种类型的数据库(如 SQLite, MySQL)。它允许直接查询并将结果作为 DataFrame 返回;或者反过来把现有 DataFrame 插入到指定表中。 下面是基于SQLite的一个例子: ```python from sqlalchemy import create_engine # 创建引擎实例 engine = create_engine('sqlite:///database.db') # 查询SQL语句并返回DataFrame query = "SELECT name, salary, department FROM employees" sql_df = pd.read_sql(query, engine) # 计算各部门平均工资 avg_salary_by_dept = sql_df.groupby('department')['salary'].mean() # 将DataFrame存回SQL表 avg_salary_by_dept.to_sql(name='average_salaries_per_department', con=engine, if_exists='replace', index=True) ``` 上述片段说明了如何执行基本SQL命令以及后续数据分析流程[^4]。 --- #### 5. 多层次索引(MultiIndex)的应用场景 除了常规单维度索引外,在某些复杂情况下可能需要用到多级索引结构。这时可以依靠 MultiIndex 构建更加灵活的数据模型。 例如定义一个多层列名体系: ```python arrays = [['A','A','B','B'], ['foo','bar','foo','bar']] tuples = list(zip(*arrays)) index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) df_multi_indexed = pd.DataFrame([[0,1,2,3], [4,5,6,7]], columns=index) print(df_multi_indexed) ``` 这段脚本演示了怎样构建一个具有双重分类标签的表格布局[^2]。 --- ### 总结 综上所述,Pandas 是一种强大而易用的数据处理工具包,适用于多种常见文件类型之间的相互转换及其高级特性应用开发之中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值