Find Peak Element 解答

本文详细阐述了如何通过二分查找算法找到数组中的峰元素及其索引,强调了解决该问题的复杂度限制为对数级。文章通过实例演示算法的应用,并解释了四种不同情况下的决策路径。

Question

A peak element is an element that is greater than its neighbors.

Given an input array where num[i] ≠ num[i+1], find a peak element and return its index.

The array may contain multiple peaks, in that case return the index to any one of the peaks is fine.

You may imagine that num[-1] = num[n] = -∞.

For example, in array [1, 2, 3, 1], 3 is a peak element and your function should return the index number 2.

Note:

Your solution should be in logarithmic complexity.

Solution

The assumption is a very good hint. It assures that there must be a peak in input array.

We can solve this problem by Binary Search.

Four situations to consider:

1. nums[mid] > nums[mid - 1] && nums[mid] > nums[mid + 1]

=> mid is a peak

2. nums[mid] > nums[mid - 1] && nums[mid] < nums[mid + 1]

=> There must exists a peak in right side

3. nums[mid] < nums[mid - 1] && nums[mid] > nums[mid + 1]

=> There must exists a peak in left side

4. nums[mid] < nums[mid - 1] && nums[mid] < nums[mid + 1]

=> Either in right or left side, there must exists a peak.

 

 1 public class Solution {
 2     public int findPeakElement(int[] nums) {
 3         // Binary Search to find peak
 4         int start = 0, end = nums.length - 1, mid = 0, prev = 0, next = 0;
 5         while (start + 1 < end)  {
 6             mid = (end - start) / 2 + start;
 7             prev = mid - 1;
 8             next = mid + 1;
 9             if (nums[mid] > nums[prev] && nums[mid] > nums[next])
10                 return mid;
11             if (nums[mid] > nums[prev] && nums[mid] < nums[next]) {
12                 start = mid;
13                 continue;
14             }
15             if (nums[mid] < nums[prev] && nums[mid] > nums[next]) {
16                 end = mid;
17                 continue;
18             }
19             start = mid;
20         }
21         if (nums[start] > nums[end])
22             return start;
23         return end;
24     }
25 }

 

转载于:https://www.cnblogs.com/ireneyanglan/p/4889395.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值