文本挖掘案例

本文详细介绍了文本挖掘的定义、步骤,并重点讲解如何使用R语言进行文本挖掘,包括分词、构建文档-词条矩阵、创建统计模型,以及如何处理停止词。文章提供了实战案例,使用sougou实验室数据,探讨了分词准确性与文字云在评估中的作用。

一、文本挖掘定义

文本挖掘指的是从文本数据中获取有价值的信息和知识,它是数据挖掘中的一种方法。文本挖掘中最重要最基本的应用是实现文本的分类和聚类,前者是有监督的挖掘算法,后者是无监督的挖掘算法。

大数据

二、文本挖掘步骤

1)读取数据库或本地外部文本文件

2)文本分词

2.1)自定义字典

2.2)自定义停止词

2.3)分词

2.4)文字云检索哪些词切的不准确、哪些词没有意义,需要循环2.1、2.2和 2.3步骤

3)构建文档-词条矩阵并转换为数据框

4)对数据框建立统计、挖掘模型

5)结果反馈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值