快速幂取模算法

本文介绍了快速幂取模算法的基本思想及实现方法,通过将指数转换为二进制形式,仅需进行少量平方运算即可高效计算大数的幂次方,并提供了具体的代码示例。

 有时候我们可能会遇到让你求x^n的题目,是不是很简单直接求就可以了,复杂度O(n)。如果x和n(1=<x=<n<=1e9)都很大让你求x^n(因为数字太大所以都会要求取模的)呢?如果用传统办法那按照O(n)的复杂度来写显然是会超时的,那我们就需要一个叫做快速幂取模的算法(O(logn))了。

算法基本思想:比如要算x^n,可以将其表示为x^n=((x^2)^2)....

       只要做k次平方运算就可以求得。由此我们可以想到,先将n表示为2的幂次的和.

       n=2^k1+2^k2+2^k3...

       所以可以通过把n拆为2进制来进行计算,比如要求x^22,我们知道22的二进制为10110,二进制数第i位的权为2^(i-1),22=1*2^0+1*2^1+1*2^2+0*2^3+1*2^4那就可以这样写:

       x^22=x^(2^0+2^1+2^2+2^4),只用计算4次。

       。。。说不下去了,看代码吧。

快速幂取模:

 1 typedef long long ll;
 2 ll mod_pow(ll x,ll n,ll mod){
 3     ll res=1;
 4     while(n>0){
 5         if(n&1) res=res*x%mod;//如果二进制最低位为1,则乘上x^(2^i)
 6         x=x*x%mod;          //将x平方并取模
 7         n>>=1;             
 8     }
 9     return res;
10 }

 

 

 

        

转载于:https://www.cnblogs.com/fu3638/p/7120940.html

标题基于Python的自主学习系统后端设计与实现AI更换标题第1章引言介绍自主学习系统的研究背景、意义、现状以及本文的研究方法和创新点。1.1研究背景与意义阐述自主学习系统在教育技术领域的重要性和应用价值。1.2国内外研究现状分析国内外在自主学习系统后端技术方面的研究进展。1.3研究方法与创新点概述本文采用Python技术栈的设计方法和系统创新点。第2章相关理论与技术总结自主学习系统后端开发的相关理论和技术基础。2.1自主学习系统理论阐述自主学习系统的定义、特征和理论基础。2.2Python后端技术栈介绍DjangoFlask等Python后端框架及其适用场景。2.3数据库技术讨论关系型和非关系型数据库在系统中的应用方案。第3章系统设计与实现详细介绍自主学习系统后端的设计方案和实现过程。3.1系统架构设计提出基于微服务的系统架构设计方案。3.2核心块设计详细说明用户管理、学习资源管理、进度跟踪等核心块设计。3.3关键技术实现阐述个性化推荐算法、学习行为分析等关键技术的实现。第4章系统测试与评估对系统进行功能测试和性能评估。4.1测试环境与方法介绍测试环境配置和采用的测试方法。4.2功能测试结果展示各功能块的测试结果和问题修复情况。4.3性能评估分析分析系统在高并发等场景下的性能表现。第5章结论与展望总结研究成果并提出未来改进方向。5.1研究结论概括系统设计的主要成果和技术创新。5.2未来展望指出系统局限性并提出后续优化方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值