性能指标

对于二分类问题

混淆矩阵

TP(真正例):将正类预测为正类
FN(假反例):将正类预测为负类
FP(假正例): 将负类预测为正类
TN(真反例): 将负类预测为负类
这么看,可能有点头晕,换个角度:

  • 第一个字母(T or F):表示预测值与真实值是否一致,一致的话为T,否则为F
  • 第二个字母(P or N):表示预测值为正(T)或者负(P)
三个常用指标
  • 查准率:
    \[P = \frac{TP}{TP+FP}\]
    即在所有预测为正的样本里面真实值为正样本所占的比例
  • 召回率:
    \[R=\frac{TP}{TP+FN}\]
    FN样本的真实标签其实为正,故分母为所有真实值为正的样本数, 即该公式表示:
    所有真实值为正的样本中预测值也为正的样本数
  • F1值
    \[F_{1}=\frac{2}{\frac{1}{P}+\frac{1}{R}}\]
    P与R的调和均值,综合衡量的查准率与召回率
mAP

目标检测中衡量识别精度的指标是mAP(mean average precision)。多个类别物体检测中,每一个类别都可以根据recall和precision绘制一条P-R曲线,AP就是该曲线下的面积,mAP是多个类别AP的平均值。
而P-R曲线是如何绘制的呢?
检测器输出每个检测结果都会对应一个detect confidence,我们会人为设定一个confidence阈值,如果检测结果高于confidence阈值,那预测该检测为正样本,否则为预测为负。
显然,阈值设置越高,则查准率P越高,但相应召回率R就越底,我们可以通过设置不同的阈值得到P-R曲线。

[ref] (http://blog.youkuaiyun.com/a1154761720/article/details/50864994)

转载于:https://www.cnblogs.com/fariver/p/6675181.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值