javaCV图像处理系列:
一、实现的功能
1、车牌检测(支持图片中含有单车牌和多车牌检测)
2、车牌定位
3、车牌字符识别
4、千份测试单次检测识别完成平均耗时39ms,准确率89.9%
二、项目维护
github项目地址:https://github.com/eguid/vlpr4j
注意:由于授权协议具有传染性,本项目基于EasyPR开发,EasyPR采用GPL v2.0与ODL(Open Database License)授权协议,因此基于商业用途使用本项目时请留意授权。
三、使用方式
package cc.eguid.charsocr;
import java.awt.Image;
import java.awt.image.BufferedImage;
import java.awt.image.DataBuffer;
import java.awt.image.DataBufferByte;
import java.awt.image.SampleModel;
import java.math.BigDecimal;
import java.util.Vector;
import org.bytedeco.javacpp.opencv_imgcodecs;
import org.bytedeco.javacpp.Pointer;
import org.bytedeco.javacpp.opencv_core;
import org.bytedeco.javacpp.opencv_core.CvType;
import org.bytedeco.javacpp.opencv_core.CvTypeInfo;
import org.bytedeco.javacpp.opencv_core.Mat;
import cc.eguid.charsocr.core.CharsRecognise;
import cc.eguid.charsocr.core.PlateDetect;
/**
* 车牌识别
* @author eguid
*
*/
public class PlateRecognition {
static PlateDetect plateDetect =null;
static CharsRecognise cr=null;
static{
plateDetect=new PlateDetect();
plateDetect.setPDLifemode(true);
cr = new CharsRecognise();
}
/**
* 单个车牌识别
* @param mat
* @return
*/
public static String plateRecognise(Mat mat){
Vector<Mat> matVector = new Vector<Mat>(1);
if (0 == plateDetect.plateDetect(mat, matVector)) {
if(matVector.size()>0){
return cr.charsRecognise(matVector.get(0));
}
}
return null;
}
/**
* 多车牌识别
* @param mat
* @return
*/
public static String[] mutiPlateRecognise(Mat mat){
PlateDetect plateDetect = new PlateDetect();
plateDetect.setPDLifemode(true);
Vector<Mat> matVector = new Vector<Mat>(10);
if (0 == plateDetect.plateDetect(mat, matVector)) {
CharsRecognise cr = new CharsRecognise();
String[] results=new String[matVector.size()];
for (int i = 0; i < matVector.size(); ++i) {
String result = cr.charsRecognise(matVector.get(i));
results[i]=result;
}
return results;
}
return null;
}
/**
* 单个车牌识别
* @param mat
* @return
*/
public static String plateRecognise(String imgPath){
Mat src = opencv_imgcodecs.imread(imgPath);
return plateRecognise(src);
}
/**
* 多车牌识别
* @param mat
* @return
*/
public static String[] mutiPlateRecognise(String imgPath){
Mat src = opencv_imgcodecs.imread(imgPath);
return mutiPlateRecognise(src);
}
public static void main(String[] args){
int sum=100;
int errNum=0;
int sumTime=0;
long longTime=0;
for(int i=sum;i>0;i--){
String imgPath = "res/image/test_image/plate_judge.jpg";
Mat src = opencv_imgcodecs.imread(imgPath);
long now =System.currentTimeMillis();
String ret=plateRecognise(src);
System.err.println(ret);
long s=System.currentTimeMillis()-now;
if(s>longTime){
longTime=s;
}
sumTime+=s;
if(!"川A0CP56".equals(ret)){
errNum++;
}
}
System.err.println("总数量:"+sum);
System.err.println("单次最长耗时:"+longTime+"ms");
BigDecimal errSum=new BigDecimal(errNum);
BigDecimal sumNum=new BigDecimal(sum);
BigDecimal c=sumNum.subtract(errSum).divide(sumNum).multiply(new BigDecimal(100));
System.err.println("总耗时:"+sumTime+"ms,平均处理时长:"+sumTime/sum+"ms,错误数量:"+errNum+",正确识别率:"+c+"%");
}
}