A. Points on Line

本文介绍了一种解决特定几何问题的算法:如何计算一条单调递增的直线上,任意三点的最大距离不超过给定值的所有组合数量。通过遍历点集并使用滑动窗口技巧来高效解决问题。
A. Points on Line
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Little Petya likes points a lot. Recently his mom has presented him n points lying on the line OX. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed d.

Note that the order of the points inside the group of three chosen points doesn't matter.

Input

The first line contains two integers: n and d (1 ≤ n ≤ 105; 1 ≤ d ≤ 109). The next line contains n integers x1, x2, ..., xn, their absolute value doesn't exceed 109 — the x-coordinates of the points that Petya has got.

It is guaranteed that the coordinates of the points in the input strictly increase.

Output

Print a single integer — the number of groups of three points, where the distance between two farthest points doesn't exceed d.

Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64dspecifier.

Examples
input
4 3
1 2 3 4
output
4
input
4 2
-3 -2 -1 0
output
2
input
5 19
1 10 20 30 50
output
1
Note

In the first sample any group of three points meets our conditions.

In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}.

In the third sample only one group does: {1, 10, 20}.

思路:因为给的序列是单调的,那么我么只要看当前点和头结点是否相差超过m,不超过的话sum+=C(i-l,2);

 1 #include<stdio.h>
 2 #include<algorithm>
 3 #include<iostream>
 4 #include<string.h>
 5 #include<stdlib.h>
 6 #include<queue>
 7 #include<stack>
 8 using namespace std;
 9 typedef long long LL;
10 LL ans[100005];
11 LL dp[100005];
12 int main(void)
13 {
14     int n,m;
15     while(scanf("%d %d",&n,&m)!=EOF)
16     {
17         int i,j;LL sum = 0;
18         for(i = 0;i < n;i++)
19         {
20             scanf("%lld",&ans[i]);
21         }
22         if(n <= 2)
23             printf("0\n");
24         else
25         {
26             int l = 0;
27             for(i = 2;i < n;i++)
28             {
29                 while(ans[i]-ans[l]>m)
30                 {
31                     l++;
32                 }
33                 sum = sum + (LL)(i-l)*(LL)(i-l-1)/(LL)2;
34             }printf("%lld\n",sum);
35         }
36         
37     }
38     return 0;
39 }

 

转载于:https://www.cnblogs.com/zzuli2sjy/p/5936998.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值