2 基于梯度的攻击——PGD

PGD(Projected Gradient Descent)是一种迭代攻击方法,作为FGSM的增强版,适用于非线性模型。通过多次小步迭代,PGD能更有效地找到对抗样本。在代码实现中,关键参数包括最大扰动、每步大小和迭代次数。作为最强的一阶攻击,PGD是评估防御方法性能的重要标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PGD攻击原论文地址——https://arxiv.org/pdf/1706.06083.pdf

1.PGD攻击的原理

  PGD(Project Gradient Descent)攻击是一种迭代攻击,可以看作是FGSM的翻版——K-FGSM (K表示迭代的次数),大概的思路就是,FGSM是仅仅做一次迭代,走一大步,而PGD是做多次迭代,每次走一小步,每次迭代都会将扰动clip到规定范围内。

 

 

一般来说,PGD的攻击效果比FGSM要好。首先,如果目标模型是一个线性模型,那么用FGSM就可以了,因为此时loss对输入的导数是固定的,换言之,使得loss下降的方向是明确的,即使你多次迭代,扰动的方向也不会改变。而对于一个非线性模型,仅仅做一次迭代,方向是不一定完全正确的,这也是为什么FGSM的效果一般的原因了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值