HDU-1007

Quoit Design

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14364    Accepted Submission(s): 3576


Problem Description
Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.
In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.

Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.
 

 

Input
The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0.
 

 

Output
For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places.
 

 

Sample Input
2 0 0 1 1 2 1 1 1 1 3 -1.5 0 0 0 0 1.5 0
 

 

Sample Output
0.71 0.00 0.75
 

 

Author
CHEN, Yue
 

 

Source
 

 

Recommend
JGShining
 
 
题意:求最近点对。
思路:二分
代码:
View Code
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define MAX 100005
#define INF 1999999999

struct tagPoint
{
    double x;
    double y;
}Point[MAX], tmp[MAX];

int cmp1(const void *a, const void *b)
{
    tagPoint *c = (tagPoint *)a;
    tagPoint *d = (tagPoint *)b;
    if (c->x != d->x)
    {
        return c->x > d->x ? 1 : -1;
    }
    return c->y > d->y ? 1 : -1;
}

int cmp2(const void* a,const void* b)
{
    return ((struct tagPoint *)a)->y > ((struct tagPoint *)b)->y ? 1 : -1;
}

double cal_dis1(int i, int j)
{
    return sqrt ( (Point[i].x - Point[j].x) * (Point[i].x - Point[j].x)
        + (Point[i].y - Point[j].y) * (Point[i].y - Point[j].y));
}

double cal_dis2(int i, int j)
{
    return sqrt ( (tmp[i].x - tmp[j].x) * (tmp[i].x - tmp[j].x)
        + (tmp[i].y - tmp[j].y) * (tmp[i].y - tmp[j].y));
}

void find (int l, int r, int mid, double &d)
{
    int i = 0;
    if (r < l)
    {
        return;
    }
    double d1 = d;
    double d2 = d;
    if (l == mid)
    {
        d1 = INF;
    }
    else
    {
        find (l, mid, (l + mid) / 2, d1);
    }
    if (mid + 1 == r)
    {
        d2 = INF;
    }
    else
    {
        find (mid + 1, r, (mid + 1 + r) / 2, d2);
    }
    d = d1 < d2 ? d1 : d2;
    int ll = mid;
    int rr = mid;
    for (i = mid - 1; i >= l; i--)
    {
        if (Point[mid].x - Point[i].x <= d)
        {
            ll = i;
        }
        else
        {
            break;
        }
    }
    for (i = mid + 1; i <= r; i++)
    {
        if (Point[i].x - Point[mid].x <= d)
        {
            rr = i;
        }
        else
        {
            break;
        }
    }
    for (i = ll; i <= mid; i++)
    {
        tmp[i - ll + 1] = Point[i];
    }
    for (i = mid + 1; i <= rr; i++)
    {
        tmp[i -ll + 1] = Point[i];
    }
    qsort (tmp + 1, rr - ll + 1, sizeof (tmp[1]), cmp2);
    double dis = 0;
    for (i = 1; i <= rr - ll + 1; i++)
    {
        int j = i + 1;
        while (j <= rr - ll + 1)
        {
            if (tmp[j].y - tmp[i].y > d)
            {
                break;
            }
            dis = cal_dis2(i, j);
            if (dis < d)
            {
                d = dis;
            }
            j++;
        }
    }
}

int main()
{
    int i = 0;
    int n = 0;
    double d = 0;
    while ( scanf ("%d", &n) != EOF && n )
    {
        for (i = 1; i <= n; i++)
        {
            scanf ("%lf%lf", &Point[i].x, &Point[i].y);
        }
        d = cal_dis1(1, 2);
        qsort (Point + 1, n, sizeof (Point[1]), cmp1);
        find (1, n, (1 + n) / 2, d);
        printf ("%.2lf\n", d / 2);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/libao/archive/2012/05/27/2520408.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值