最长上升子序列 POJ2533

本文介绍了一个经典的编程问题——寻找序列中最长的上升子序列。通过动态规划的方法,使用数组记录以每个元素结尾的最长上升子序列长度,并最终找出整个序列的最长上升子序列长度。
Longest Ordered Subsequence
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 18853 Accepted: 8147

Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence ( a1, a2, ..., aN) be any sequence ( ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

Source

Northeastern Europe 2002, Far-Eastern Subregion
 
题目的大意是:给出一序列,求出该序列的最长上升子序列的最大长度。
思路:用数组a[]存储序列,b[i]表示以a[i]为结尾的序列的最大长度。
因此要求出b[i]的最大值,即求出max{b[0],b[1]....b[i-1]}的最大值,那么b[i]的最大值为max{b[0],b[1]....b[i-1]}+1;
即可写出状态方程:b[i]=max{b[0],b[1].....b[j]}+1;(0<=j<i&&a[j]<a[i]),然后求出数组b[]中的最大值即为所求。
#include<iostream>
using namespace std;

int main(void)
{
	int i,j,n;
	int a[1001];
	int b[1001];
	int max;
	scanf("%d",&n);
	for(i=0;i<n;i++)
	{
		scanf("%d",&a[i]);
		b[i]=1;
	}
	for(i=0;i<n;i++)
	{
		max=0;
		for(j=0;j<i;j++)
		{
			if(a[i]>a[j]&&b[j]>max)
			{
				max=b[j];
			}
		}
		b[i]=max+1;
	}
	max=0;
	for(i=0;i<n;i++)
	{
		if(max<b[i])
			max=b[i];
	}
	printf("%d\n",max);
	return 0;
}
 
 

转载于:https://www.cnblogs.com/dolphin0520/archive/2011/07/09/2102044.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值