LeetCode 474. Ones and Zeroes

本文探讨了如何使用动态规划算法解决给定0和1数量下,从字符串数组中找到最大数量的可形成字符串的问题。通过实例演示了算法的实现过程,以及如何在限制条件下最大化资源利用。

In the computer world, use restricted resource you have to generate maximum benefit is what we always want to pursue.

For now, suppose you are a dominator of m0s and n1s respectively. On the other hand, there is an array with strings consisting of only 0s and 1s.

Now your task is to find the maximum number of strings that you can form with given m0s and n1s. Each 0 and 1 can be used at most once.

Note:

  1. The given numbers of 0s and 1s will both not exceed 100

  2. The size of given string array won’t exceed 600.

Example 1:

Input: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3
Output: 4

Explanation: This are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are “10,”0001”,”1”,”0”

Example 2:

Input: Array = {"10", "0", "1"}, m = 1, n = 1
Output: 2

Explanation: You could form "10", but then you'd have nothing left. Better form "0" and "1". 

分析

等价于给你一个集合,集合里的是pair, pair.first是string 0的个数,pair.second是string 1的个数。然后给你m,n。让你在集合里尽可能多的选择pair出来,是这些pair的first 之和不大于m, second之和不大于n,就酱。
我采用的是动态规划,dp[i][j]表示的意义是当m=i, n=j时,能拿取的最大pair数,对每个pair有两种状态,其一是拿取,dp[i][j]=dp[i-pair.first][j-pair.second]+1。其二是不拿,dp[i][j]=dp[i][j];
故状态转移方程是dp[i][j]=max ( dp[i-pair.first][j-pair.second]+1, dp[i][j]=dp[i][j])

class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        vector<pair<int,int>> nums;
        for(int i=0;i<strs.size();i++){
            pair<int,int> p={0,0};
            for(int j=0;j<strs[i].size();j++)
                strs[i][j]-'0'==1?p.second++:p.first++;
            nums.push_back(p);
        }
        vector<vector<int>> dp(m+1,vector<int>(n+1,0));
        for(auto o:nums)
            for(int i=m;i>=o.first;i--)
                for(int j=n;j>=o.second;j--)
                    dp[i][j]=max(dp[i][j],dp[i-o.first][j-o.second]+1);
        return dp[m][n];
    }
};

转载于:https://www.cnblogs.com/A-Little-Nut/p/10067413.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值