【算法】DP解决旅行路径问题

本文介绍了一种解决旅行者访问多个城市并希望最小化总费用的问题的方法。通过使用动态规划来寻找最优路径,确保每个城市被访问不超过两次,并提供了一个具体的实现示例。

问题描述 :

After coding so many days,Mr Acmer wants to have a good rest.So travelling is the best choice!He has decided to visit n cities(he insists on seeing all the cities!And he does not mind which city being his start station because superman can bring him to any city at first but only once.), and of course there are m roads here,following a fee as usual.But Mr Acmer gets bored so easily that he doesn’t want to visit a city more than twice!And he is so mean that he wants to minimize the total fee!He is lazy you see.So he turns to you for help.

输入:

There are several test cases,the first line is two intergers n(1<=n<=10) and m,which means he needs to visit n cities and there are m roads he can choose,then m lines follow,each line will include three intergers a,b and c(1<=a,b<=n),means there is a road between a and b and the cost is of course c.Input to the End Of File.

输出:

There are several test cases,the first line is two intergers n(1<=n<=10) and m,which means he needs to visit n cities and there are m roads he can choose,then m lines follow,each line will include three intergers a,b and c(1<=a,b<=n),means there is a road between a and b and the cost is of course c.Input to the End Of File.

样例输入:

2 1
1 2 100
3 2
1 2 40
2 3 50
3 3
1 2 3
1 3 4
2 3 10

样例输出:

100
90
7 

 

 

#include <cstdio>
#include <iostream>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
int dp[60000][11];
int cnt[11][11];
int three[12];
int m,n;
int f[60000][11];
void init()
{
    three[1]=1;
    for(int i=2;i<=11;i++)
        three[i]=three[i-1]*3;
    for(int i=0;i<three[11];i++)
    {
        int tmp=i;
        for(int j=1;j<=10;j++)
        {
            f[i][j]=tmp%3;
            tmp/=3;
        }
    }
}
int main()
{
    init();
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        memset(dp,0x7f,sizeof(dp));
        memset(cnt,0x7f,sizeof(cnt));
        int ans=dp[0][0];
        int inf=ans;
        int x,y,d;
        while(m--)
        {
            scanf("%d%d%d",&x,&y,&d);
            cnt[x][y]=cnt[y][x]=min(cnt[x][y],d);
        }
        for(int i=1;i<=n;i++)
            dp[three[i]][i]=0;
        for(int state=1;state<three[n+1];state++)
        {
            bool ok=1;
            for(int i=1;i<=n;i++)
            {
                if(f[state][i]==0)
                    ok=0;
                if(dp[state][i]==inf)
                    continue;
                for(int j=1;j<=n;j++)
                {
                    if(i==j)
                        continue;
                    if(f[state][j]==2)
                        continue;
                    if(cnt[i][j]==inf)
                        continue;
                    dp[state+three[j]][j]=min(dp[state+three[j]][j],dp[state][i]+cnt[i][j]);
                }
            }
            if(ok)
            {
                for(int i=1;i<=n;i++)
                {
                    ans=min(ans,dp[state][i]);
                }
            }
        }
        if(ans==inf)
            ans=-1;
        printf("%d\n",ans);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/KID-XiaoYuan/p/6417431.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值