机器学习与深度学习

本文概述了机器学习中的核心算法,包括线性回归、K-means、决策树、随机森林、支持向量机、强化学习等,并介绍了深度学习的基础概念及与传统机器学习的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.机器学习相关算法:

线性回归、K-means、决策树、随机森林、主成分分析、支持向量机,强化学习,贝叶斯网络

 

线性回归:解决数据预测问题,曲线弥合,已知{x1,x2,x3,...} , {y1,y2,y3,...} , 用一条曲线描述已知点的规律。 常用:最小二乘法。

 

K-means : 用距离给离散的数据聚类,  首先给出几个中心点,以中心点聚类 =》 求 每个分类的均值,如果均值等于中心点,结束,如果不相等,以均值为中心点,再次聚类。

 

决策树: 多个特征,每个特征权重不同,特征进行分类,形成一棵树, 常见算法有 ID3,C4,5,  LR+ BGDT, 

 

随机森林:多棵决策树,组成森林。

 

贝叶斯网络:解决逆概率问题。

 

2。 深度学习:

 

基于人工神经网络,多层神经网络,神经元

 

机器学习与深度学习 区别:

机器学习是用算法真正解析数据,不断学习,然后对世界中发生的事做出判断和预测。

深度学习是每一个神经元会对输入的信息进行权衡,确定权重,搞清它与所执行任务的关系,比如有多正确或者多么不正确。最终的结果由所有权重来决定。最终会给出一个概率,例如:吴恩达用几千万张图片来识别猫。

 

 

转载于:https://www.cnblogs.com/songsh/p/9463108.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值