CF450B Jzzhu and Sequences(矩阵加速)

CF450B Jzzhu and Sequences

 

大佬留言:这。这。不就是矩乘的模板吗,切掉它!!

 

You are given xx and yy , please calculate $f_{n}(mod(10^{9}+7))$.

 

原式:$f_{i}=f_{i-1}+f_{i+1}$

转换一下:$f_{i+1}=f_{i}-f_{i-1}$

相当于$f_{i}=f_{i-1}-f_{i-2}$

 

有没有发现它跟斐波那契通项公式有点儿类似?

 

的确是这样的,那么转移矩阵也类似:

$0 -1$

$1 1$

 

矩阵快速幂好了

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>

#define LL long long
#define N 10
using namespace std;

class Martix{
public:
    LL n,m;
    LL A[N][N];
    Martix(){
        memset(A,0,sizeof(A));
    }
};
const LL mod=1000000007;

Martix operator * (Martix A,Martix B){
    Martix C;
    int n=A.n,m=B.m,p=A.m;
    C.n=n,C.m=m;
    for(LL i=1;i<=n;i++)    
        for(LL j=1;j<=m;j++)
            for(LL k=1;k<=p;k++)
                C.A[i][j]=((A.A[i][k]*B.A[k][j]+mod)%mod+C.A[i][j]%mod+mod)%mod;
    return C;
}

LL x,y,n;

Martix A,B;
inline LL pow(){
    for(;n;n>>=1,A=A*A)
        if(n&1) B=B*A;
    return B.A[1][2];
}

int main()
{
    scanf("%lld%lld%lld",&x,&y,&n);
    
    A.n=A.m=2;
    A.A[1][1]=0,A.A[1][2]=-1,A.A[2][1]=1,A.A[2][2]=1;
    B.n=1,B.m=2;
    B.A[1][1]=(x+mod)%mod,B.A[1][2]=(y+mod)%mod;
    if(n==1) printf("%lld",(x+mod)%mod);
    else if(n==2) printf("%lld",(y+mod)%mod);
    else n-=2,printf("%lld\n",pow());
    return 0;
}

 

转载于:https://www.cnblogs.com/song-/p/9762813.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值