luoguP4171 [JSOI2010]满汉全席

本文深入浅出地介绍了2-SAT问题及其在实际问题中的应用,通过具体实例讲解了如何将问题抽象化并转化为图论中的强连通分量问题,最后给出了详细的代码实现。
前言

由于蒟蒻才刚开始学 \(\text{2-SAT}\),所以题解中有的地方可能不够精炼,望多包涵!

题目描述

题目意思很简单,标准的\(\text{2-SAT}\)问题模型。那么我们就先来介绍一下 \(\text{2-SAT}\) (以下是个人的小小概括)
\(\text{2-SAT}\) 问题,抽象化一下,是这样的:
给出 \(n\) 个布尔变量 \(\{x_n\}\),以及 \(m\) 个命题 \((a,aa,b,bb)\),一个命题成立的条件是\([x_a=aa]\lor[x_b=bb]\)
现在就是要判断是否一种方案,将\(\{x_n\}\)中的每个元素赋一个值,使所有的\(m\)个命题成立
对于这种问题,我们用一下方法来建立图的模型:
对于 \(n\) 个不同变量 \(x\),我们将其拆成两个点,分别表示 \(x\) 为真和 \(x\) 为假(可以用 \(i\) 表示 \(x_i\) 为真,\(i+n\) 表示 \(x_i\) 为假)

接下来对于每一条有向边 \((a,b)\),我们赋予它这样的意义:若 \(a\) 应该被满足,则 \(b\) 也必须被满足

这样一来,我们就可以用如下的方法判定有无解:

  • 有解的情况:\(\forall\ i\in n\), \(i\)\(i+n\) 不属于同一个强连通分量。
  • 无解的情况:\(\exists\ i\in n\), \(i\)\(i+n\) 属于同一个强连通分量。

因为按照我们上面的建边方法,属于同一个强连通分量的两个点他们所代表的命题是要同时为真的。
而因为同一个布尔变量 \(x\) 不会同时有两种值,所以以上判断方法的正确性是显然的。
那么我们就只需建好图,跑一遍 \(\text{Tarjan}\) 再按照上述方法判断即可。
那么,接下来就是最重要的一步:如何建图?
其实这并不难,只要能抽象出 \(\{x_n\}\)\(m\) 个命题就好,以这道题为例,加深一下理解。


基本思路

我们把\(n\)样食材抽象成\(\{x_n\}\),第 \(i\) 样食材做成汉式表示 \(x_i\) 为真(点 \(i\)),反之表示 \(x_i\) 为假(点 \(i+n\)
然后对于每一位评审的需求,也类似地按照上面的方法抽象一下
然后对于每一项需求给出的两个命题 \(p,q\),我们连两条边 \((\lnot p,q)\)\((\lnot q, p)\)
(至于这里的 \(p\)\(q\)是什么,可以自己思考一下)


细节注意事项

  • 由于我们的 \(n\) 样食材会被拆成两个点,所以点的空间要开两倍。
  • 由于我们的 \(m\) 项需求会产生两条边,所以边的空间也要开两倍。
  • 每一次初始化时,如果用\(\text{for}\)循环清空数组,千万要注意枚举的上界(见上两条)。

参考代码

可能我写的不是很好,没有看明白的话可以结合我的代码理解给个好评吧啊啊啊

/*--------------------------------
  Code name: meal.cpp
  Author: The Ace Bee
  This code is made by The Ace Bee
--------------------------------*/
#include <cstdio>
#include <cstring>
#define rg register
#define fileopen(x)                             \
    freopen(x".in", "r", stdin);                \
    freopen(x".out", "w", stdout);
#define fileclose                               \
    fclose(stdin);                              \
    fclose(stdout);
const int MAXN = 233;
const int MAXM = 2333;
inline int min(int a, int b) { return a < b ? a : b; }
inline int read() {
    int s = 0; bool f = false; char c = getchar();
    while (c < '0' || c > '9') f |= (c == '-'), c = getchar();
    while (c >= '0' && c <= '9') s = (s << 3) + (s << 1) + (c ^ 48), c = getchar();
    return f ? -s : s;
}
int tot, head[MAXN], nxt[MAXM], ver[MAXM];
inline void Add_edge(int u, int v)
{ nxt[++tot] = head[u], head[u] = tot, ver[tot] = v; }
int n, num, dfn[MAXN], low[MAXN];
int st[MAXN], top, co[MAXN], col;
inline void tarjan(int u) {
    dfn[u] = low[u] = ++num, st[++top] = u;
    for (rg int v, i = head[u]; i; i = nxt[i]) {
        if (!dfn[v = ver[i]])
            tarjan(v), low[u] = min(low[u], low[v]);
        else
            if (!co[v]) low[u] = min(low[u], dfn[v]);
    }
    if (dfn[u] == low[u]) {
        ++col;
        do co[st[top]] = col, --top;
        while (st[top + 1] != u);
    }
}
inline void init() {
    tot = col = num = top = 0;
    memset(co, 0, sizeof co);
    memset(dfn, 0, sizeof dfn);
    memset(low, 0, sizeof low);
    memset(head, 0, sizeof head);
}
int main() {
//  fileopen("meal");
    char sa[10], sb[10];
    for (rg int T = read(); T; --T) {
        init();
        int n = read();
        for (rg int m = read(); m; --m) {
            scanf("%s%s", sa, sb);
            int a = 0, lena = strlen(sa);
            for (rg int i = 1; i < lena; ++i)
                a = (a << 3) + (a << 1) + (sa[i] ^ 48);
            int b = 0, lenb = strlen(sb);
            for (rg int i = 1; i < lenb; ++i)
                b = (b << 3) + (b << 1) + (sb[i] ^ 48);
            if (sa[0] == 'h' && sb[0] == 'h')
                Add_edge(a + n, b), Add_edge(b + n, a);
            else if (sa[0] == 'h' && sb[0] == 'm')
                Add_edge(a + n, b + n), Add_edge(b, a);
            else if (sa[0] == 'm' && sb[0] == 'h')
                Add_edge(a, b), Add_edge(b + n, a + n);
            else if (sa[0] == 'm' && sb[0] == 'm')
                Add_edge(a, b + n), Add_edge(b, a + n);
        }
        for (rg int i = 1; i <= n << 1; ++i)
            if (!dfn[i]) tarjan(i);
        int flag = 1;
        for (rg int i = 1; i <= n; ++i)
            if (co[i] == co[i + n]) { flag = 0; break; }
        puts(flag ? "GOOD" : "BAD");
    }
//  fileclose;
    return 0;
}

完结撒花 \(qwq\)

转载于:https://www.cnblogs.com/zsbzsb/p/11261844.html

需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕“需求响应动态冰蓄冷系统与需求响应策略的优化研究”展开,基于Matlab代码实现,重点探讨了冰蓄冷系统在电力需求响应背景下的动态建模与优化调度策略。研究结合实际电力负荷与电价信号,构建系统能耗模型,利用优化算法对冰蓄冷系统的运行策略进行求解,旨在降低用电成本、平衡电网负荷,并提升能源利用效率。文中还提及该研究为博士论文复现,涉及系统建模、优化算法应用与仿真验证等关键技术环节,配套提供了完整的Matlab代码资源。; 适合人群:具备一定电力系统、能源管理或优化算法基础,从事科研或工程应用的研究生、高校教师及企业研发人员,尤其适合开展需求响应、综合能源系统优化等相关课题研究的人员。; 使用场景及目标:①复现博士论文中的冰蓄冷系统需求响应优化模型;②学习Matlab在能源系统建模与优化中的具体实现方法;③掌握需求响应策略的设计思路与仿真验证流程,服务于科研项目、论文写作或实际工程方案设计。; 阅读建议:建议结合提供的Matlab代码逐模块分析,重点关注系统建模逻辑与优化算法的实现细节,按文档目录顺序系统学习,并尝试调整参数进行仿真对比,以深入理解不同需求响应策略的效果差异。
综合能源系统零碳优化调度研究(Matlab代码实现)内容概要:本文围绕“综合能源系统零碳优化调度研究”,提供了基于Matlab代码实现的完整解决方案,重点探讨了在高比例可再生能源接入背景下,如何通过优化调度实现零碳排放目标。文中涉及多种先进优化算法(如改进遗传算法、粒子群优化、ADMM等)在综合能源系统中的应用,涵盖风光场景生成、储能配置、需求响应、微电网协同调度等多个关键技术环节,并结合具体案例(如压缩空气储能、光热电站、P2G技术等)进行建模与仿真分析,展示了从问题建模、算法设计到结果验证的全流程实现过程。; 适合人群:具备一定电力系统、能源系统或优化理论基础,熟悉Matlab/Simulink编程,从事新能源、智能电网、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①开展综合能源系统低碳/零碳调度的科研建模与算法开发;②复现高水平期刊(如SCI/EI)论文中的优化模型与仿真结果;③学习如何将智能优化算法(如遗传算法、灰狼优化、ADMM等)应用于实际能源系统调度问题;④掌握Matlab在能源系统仿真与优化中的典型应用方法。; 阅读建议:建议结合文中提供的Matlab代码与网盘资源,边学习理论模型边动手调试程序,重点关注不同优化算法在调度模型中的实现细节与参数设置,同时可扩展应用于自身研究课题中,提升科研效率与模型精度。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值