1.训练的话一般一批一批训练,即让batch_size 个样本同时训练;
2.每个样本又包含从该样本往后的连续seq_len个样本(如seq_len=15),seq_len也就是LSTM中cell的个数;
3.每个样本又包含inpute_dim个维度的特征(如input_dim=7)
因此,输入层的输入数据通常先要reshape:
x= np.reshape(x, (batch_size , seq_len, input_dim))
(友情提示:每个cell共享参数!!!)
举个例子:
from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf import numpy as np #在这里做数据加载,还是使用那个MNIST的数据,以one_hot的方式加载数据,记得目录可以改成之前已经下载完成的目录 mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) ''' MNIST的数据是一个28*28的图像,这里RNN测试,把他看成一行行的序列(28维度(28长的sequence)*28行) ''' # RNN学习时使用的参数 learning_rate = 0.001 training_iters = 100000 batch_size = 128 display_step = 10 # 神经网络的参数 n_input = 28 # 输入层的n n_steps = 28 # 28长度 n_hidden = 128 # 隐含层的特征数 n_classes = 10 # 输出的数量,因为是分类问题,0~9个数字,这里一共有10个 # 构建tensorflow的输入X的placeholder x = tf.placeholder("float", [None, n_steps, n_input]) # tensorflow里的LSTM需要两倍于n_hidden的长度的状态,一个state和一个cell # Tensorflow LSTM cell requires 2x n_hidden length (state & cell) istate = tf.placeholder("float", [None, 2 * n_hidden]) # 输出Y y = tf.placeholder("float", [None, n_classes]) # 随机初始化每一层的权值和偏置 weights = { 'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])), # Hidden layer weights 'out': tf.Variable(tf.random_normal([n_hidden, n_classes])) } biases = { 'hidden': tf.Variable(tf.random_normal([n_hidden])), 'out': tf.Variable(tf.random_normal([n_classes])) } ''' 构建RNN ''' def RNN(_X, _istate, _weights, _biases): # 规整输入的数据 _X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size _X = tf.reshape(_X, [-1, n_input]) # (n_steps*batch_size, n_input) # 输入层到隐含层,第一次是直接运算 _X = tf.matmul(_X, _weights['hidden']) + _biases['hidden'] # 之后使用LSTM lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0) # 28长度的sequence,所以是需要分解位28次 _X = tf.split(0, n_steps, _X) # n_steps * (batch_size, n_hidden) # 开始跑RNN那部分 outputs, states = tf.nn.rnn(lstm_cell, _X, initial_state=_istate) # 输出层 return tf.matmul(outputs[-1], _weights['out']) + _biases['out'] pred = RNN(x, istate, weights, biases) # 定义损失和优化方法,其中算是为softmax交叉熵,优化方法为Adam cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # Softmax loss optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Adam Optimizer # 进行模型的评估,argmax是取出取值最大的那一个的标签作为输出 correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # 初始化 init = tf.initialize_all_variables() # 开始运行 with tf.Session() as sess: sess.run(init) step = 1 # 持续迭代 while step * batch_size < training_iters: # 随机抽出这一次迭代训练时用的数据 batch_xs, batch_ys = mnist.train.next_batch(batch_size) # 对数据进行处理,使得其符合输入 batch_xs = batch_xs.reshape((batch_size, n_steps, n_input)) # 迭代 sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, istate: np.zeros((batch_size, 2 * n_hidden))}) # 在特定的迭代回合进行数据的输出 if step % display_step == 0: # Calculate batch accuracy acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, istate: np.zeros((batch_size, 2 * n_hidden))}) # Calculate batch loss loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, istate: np.zeros((batch_size, 2 * n_hidden))}) print "Iter " + str(step * batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + \ ", Training Accuracy= " + "{:.5f}".format(acc) step += 1 print "Optimization Finished!" # 载入测试集进行测试 test_len = 256 test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input)) test_label = mnist.test.labels[:test_len] print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label, istate: np.zeros((test_len, 2 * n_hidden))}