1048: [HAOI2007]分割矩阵 - BZOJ

本文介绍了一个关于矩阵分割的问题,目标是最小化分割后矩阵得分的方差。通过记忆化搜索算法来解决该问题,详细展示了算法的实现过程,并提供了一段具体的伪代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

将一个a*b的数字矩阵进行如下分割:将原矩阵沿某一条直线分割成两个矩阵,再将生成的两个矩阵继续如此分割(当然也可以只分割其中的一个),这样分割了(n-1)次后,原矩阵被分割成了n个矩阵。(每次分割都只能沿着数字间的缝隙进行)原矩阵中每一位置上有一个分值,一个矩阵的总分为其所含各位置上分值之和。现在需要把矩阵按上述规则分割成n个矩阵,并使各矩阵总分的均方差最小。请编程对给出的矩阵及n,求出均方差的最小值。
Input

第一行为3个整数,表示a,b,n(1
Output

仅一个数,为均方差的最小值(四舍五入精确到小数点后2位)
Sample Input
5 4 4
2 3 4 6
5 7 5 1
10 4 0 5
2 0 2 3
4 1 1 1

Sample Output
0.50

 

记忆化搜索,f[i,j,k,l,n]表示矩形(i,j,k,l)分成n块最小方差(最后再除以n,一开始没除,我真的是个傻×,方差都不会算)

 1 const
 2     inf=999999999999;
 3 var
 4     f:array[0..10,0..10,0..10,0..10,0..10]of double;
 5     aa:array[0..10,0..10]of double;
 6     a,b,n:longint;
 7     sum:double;
 8 
 9 function min(x,y:double):double;
10 begin
11     if x<y then exit(x);
12     exit(y);
13 end;
14 
15 function fn(x1,x2,y1,y2,k:longint):double;
16 var
17     i,j:longint;
18 begin
19     if f[x1,x2,y1,y2,k]<inf then exit(f[x1,x2,y1,y2,k]);
20     if (x2-x1+1)*(y2-y1+1)<k then exit(inf);
21     for i:=x1 to x2-1 do
22       for j:=1 to k-1 do
23         f[x1,x2,y1,y2,k]:=min(f[x1,x2,y1,y2,k],fn(x1,i,y1,y2,j)+fn(i+1,x2,y1,y2,k-j));
24     for i:=y1 to y2-1 do
25       for j:=1 to k-1 do
26         f[x1,x2,y1,y2,k]:=min(f[x1,x2,y1,y2,k],fn(x1,x2,y1,i,j)+fn(x1,x2,i+1,y2,k-j));
27     exit(f[x1,x2,y1,y2,k]);
28 end;
29 
30 procedure main;
31 var
32     i,j,k,l,r:longint;
33 begin
34     read(a,b,n);
35     for i:=1 to a do
36       for j:=1 to b do
37         begin
38           read(aa[i,j]);
39           sum:=sum+aa[i,j];
40           aa[i,j]:=aa[i,j]+aa[i-1,j]+aa[i,j-1]-aa[i-1,j-1];
41         end;
42     sum:=sum/n;
43     for i:=1 to a do
44       for j:=i to a do
45         for k:=1 to b do
46           for l:=k to b do
47             for r:=1 to n do
48               f[i,j,k,l,r]:=inf;
49     for i:=1 to a do
50       for j:=i to a do
51         for k:=1 to b do
52           for l:=k to b do
53             f[i,j,k,l,1]:=sqr(aa[j,l]+aa[i-1,k-1]-aa[j,k-1]-aa[i-1,l]-sum);
54     write(sqrt(fn(1,a,1,b,n)/n):0:2);
55 end;
56 
57 begin
58     main;
59 end.
View Code

 

转载于:https://www.cnblogs.com/Randolph87/p/3651231.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值