B - Sum It Up

本文介绍了一种求和组合算法,旨在找出所有不同的整数组合,这些整数来自指定列表并能相加得到特定总和。文章详细阐述了输入输出格式、示例,并通过具体实现代码展示了如何使用深度优先搜索策略解决问题,同时避免重复结果。

---恢复内容开始---

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t=4, n=6, and the list is [4,3,2,2,1,1], then there are four different sums that equal 4: 4,3+1,2+2, and 2+1+1.(A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general. 

InputThe input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x1,...,xn. If n=0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12(inclusive), and x1,...,xn will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions. 
OutputFor each test case, first output a line containing 'Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line 'NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distince; the same sum connot appear twice. 
Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output

Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25

题目难点和遇到问题的分析:
    1.如何快速的让所给序列反序的排列好;
    2.我们分析可以知道,排好序后,前面加过的数可以不用再在反复相加,相当于减少了一遍从小到达的重复;(难点在于我们怎么停在下一位数上,而不是返回第一个数)
    3.如何避免重复的情况出现(如3,3,2会有3+2,3+2两个);
解决方法和思想:
    1.sort(a,a+n,cmp)重构sort的排序方法;
    int cmp(int x,int y)
    {
        return x>y;
    }
     2.DFS(开始位置,总数和,储存数组位置);利用循环DFS(j+1,**,**)。循环一次后就会停在下一位,而不是回到0;
    
    for(int j=x;j<n;j++)
    {
        num[sum] = array[j];
        //cout << "X+1: "<< j << "----" << num[sum] << endl;
        DFS(j+1,total+array[j],sum+1);
        while(array[j]==array[j+1] && j+1<n)
            j++;
    }
   3. DFS()后,返回到上一次的时候,判断它的下一位数是不是和自身相同,如果是j++,不可以用continue;

while(array[j]==array[j+1] && j+1<n)
            j++;    
    总代码 :
  
#include <iostream>
#include <algorithm>
#include <cstring>
#define maxn 15
using namespace std;
int t,n,array[maxn];
int num[maxn],mark;

int cmp(int x,int y)
{
    return x>y;
}

void DFS(int x,int total,int sum)
{
    if(total > t)
        return;
    if(total == t)
    {
        mark = 1;
        for(int i=0;i<sum;i++)
        {
            if(i)
                cout << "+" << num[i];
            else
                cout << num[i];
        }
        cout << endl;
    }

    for(int j=x;j<n;j++)
    {
        num[sum] = array[j];
        //cout << "X+1: "<< j << "----" << num[sum] << endl;
        DFS(j+1,total+array[j],sum+1);
        while(array[j]==array[j+1] && j+1<n)
            j++;
    }
}

int main()
{
    while(cin >> t >> n && n)
    {
        memset(array,0,sizeof(array));
        for(int i=0;i<n;i++)
            cin >> array[i];
        sort(array,array+n,cmp);
        mark = 0;
        cout <<"Sums of " << t << ":" <<"\n";
        DFS(0,0,0);
        if(!mark)
            cout <<"NONE" << "\n";
    }
    return 0;
}

 

 

 

转载于:https://www.cnblogs.com/7750-13/p/7260376.html

### 光流法C++源代码解析与应用 #### 光流法原理 光流法是一种在计算机视觉领域中用于追踪视频序列中运动物体的方法。它基于亮度不变性假设,即场景中的点在时间上保持相同的灰度值,从而通过分析连续帧之间的像素变化来估计运动方向和速度。在数学上,光流场可以表示为像素位置和时间的一阶导数,即Ex、Ey(空间梯度)和Et(时间梯度),它们共同构成光流方程的基础。 #### C++实现细节 在给定的C++源代码片段中,`calculate`函数负责计算光流场。该函数接收一个图像缓冲区`buf`作为输入,并初始化了几个关键变量:`Ex`、`Ey`和`Et`分别代表沿x轴、y轴和时间轴的像素强度变化;`gray1`和`gray2`用于存储当前帧和前一帧的平均灰度值;`u`则表示计算出的光流矢量大小。 #### 图像处理流程 1. **初始化和预处理**:`memset`函数被用来清零`opticalflow`数组,它将保存计算出的光流数据。同时,`output`数组被填充为白色,这通常用于可视化结果。 2. **灰度计算**:对每一像素点进行处理,计算其灰度值。这里采用的是RGB通道平均值的计算方法,将每个像素的R、G、B值相加后除以3,得到一个近似灰度值。此步骤确保了计算过程的鲁棒性和效率。 3. **光流向量计算**:通过比较当前帧和前一帧的灰度值,计算出每个像素点的Ex、Ey和Et值。这里值得注意的是,光流向量的大小`u`是通过`Et`除以`sqrt(Ex^2 + Ey^2)`得到的,再乘以10进行量化处理,以减少计算复杂度。 4. **结果存储与阈值处理**:计算出的光流值被存储在`opticalflow`数组中。如果`u`的绝对值超过10,则认为该点存在显著运动,因此在`output`数组中将对应位置标记为黑色,形成运动区域的可视化效果。 5. **状态更新**:通过`memcpy`函数将当前帧复制到`prevframe`中,为下一次迭代做准备。 #### 扩展应用:Lukas-Kanade算法 除了上述基础的光流计算外,代码还提到了Lukas-Kanade算法的应用。这是一种更高级的光流计算方法,能够提供更精确的运动估计。在`ImgOpticalFlow`函数中,通过调用`cvCalcOpticalFlowLK`函数实现了这一算法,该函数接受前一帧和当前帧的灰度图,以及窗口大小等参数,返回像素级别的光流场信息。 在实际应用中,光流法常用于目标跟踪、运动检测、视频压缩等领域。通过深入理解和优化光流算法,可以进一步提升视频分析的准确性和实时性能。 光流法及其C++实现是计算机视觉领域的一个重要组成部分,通过对连续帧间像素变化的精细分析,能够有效捕捉和理解动态场景中的运动信息
A random number of Rabbit images ranging from 1 to 10 are displayed for each operand and the user is expected to enter the values of the two operands and the result of adding the two operands, in the given text fields. When the user clicks on the button ‘Check!’, one of two things can happen: Case 1: all three input values are correct i) the text changes to ‘"Correct! Have another go?"’. ii) the number of Rabbit images displayed for each of the two operands changes. See Figure 2 for an example. iii) the three text fields are reset (i.e. they are made empty). 2/5 Case 2: at least one of the input values entered is incorrect i) the text changes to ‘Wrong! Try again!’. ii) the number of Rabbit images displayed does NOT change. iii) the text fields do NOT change.Implement SumItUp as a Java application. You application must satisfy ALL the specific requirements given below: a) The title of the top-level container must be ‘Welcome to SumItUp!’. b) The initial text should be ‘Enter two operands, result and click on 'Check!'’. See Figure 1. c) There should be no more than 4 Rabbit images per row. See Hint 1. d) The text fields should be wide enough to display at least TWO characters. e) The button ‘Check!’ must not resize when the GUI is resized. See Hint 2 and Figure 3. f) The ‘plus sign’ icon should appear vertically centered between the two sets of Rabbit images and must not resize when the GUI is resized. See Hint 2 and Figure 3. g) When first launched and whenever a correct answer is given, the number of displayed Rabbit images for each operand should change to any number between 1 and 10 (inclusive). See Hint 3 and Hint 4. Note: It is possible for the next number(s) to be the same as the current number(s). h) Nothing should happen if the user clicks the ‘Check!’ button while at least one of the text fields are empty, i.e. no errors should be thrown in this case. Note: You can assume that only a numeric value will be entered into the text fields.
06-09
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值