Leetcode 292: Nim Game

本文介绍了一种判断Nim游戏胜负的算法实现。通过三种不同的方法:取模运算、动态规划以及递归缓存,来确定玩家是否能在给定石堆数量的情况下赢得游戏。

You are playing the following Nim Game with your friend: There is a heap of stones on the table, each time one of you take turns to remove 1 to 3 stones. The one who removes the last stone will be the winner. You will take the first turn to remove the stones.

Both of you are very clever and have optimal strategies for the game. Write a function to determine whether you can win the game given the number of stones in the heap.

For example, if there are 4 stones in the heap, then you will never win the game: no matter 1, 2, or 3 stones you remove, the last stone will always be removed by your friend.

 

 1 public class Solution {
 2     public bool CanWinNim(int n) {
 3         return n % 4 != 0;
 4     }
 5 }
 6 
 7 public class Solution1 {
 8     public bool CanWinNim(int n) {
 9         bool dp0 = true, dp1 = true, dp2 = true;
10         
11         for (int i = 3; i < n; i++)
12         {
13             var dp = !dp0 || !dp1 || !dp2;
14             dp0 = dp1;
15             dp1 = dp2;
16             dp2 = dp;
17         }
18         
19         return dp2;
20     }
21 }
22 
23 public class Solution2 {
24     private Dictionary<int, bool> cache = new Dictionary<int, bool>();
25     
26     public bool CanWinNim(int n) {
27         if (n <= 3) return true;
28         
29         if (!cache.ContainsKey(n))
30         {
31             cache[n] = !CanWinNim(n - 1) || !CanWinNim(n - 2) || !CanWinNim(n - 3);    
32         }      
33         
34         return cache[n];
35     }
36 }

 

转载于:https://www.cnblogs.com/liangmou/p/7997381.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值