LeetCode Target Sum

原题链接在这里:https://leetcode.com/problems/target-sum/description/

题目:

You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.

Find out how many ways to assign symbols to make sum of integers equal to target S.

Example 1:

Input: nums is [1, 1, 1, 1, 1], S is 3. 
Output: 5
Explanation: 

-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3

There are 5 ways to assign symbols to make the sum of nums be target 3.

Note:

  1. The length of the given array is positive and will not exceed 20.
  2. The sum of elements in the given array will not exceed 1000.
  3. Your output answer is guaranteed to be fitted in a 32-bit integer.

题解:

DP问题. 储存到num时所有可能结果和对应的不同ways的数目. 用dp数组在储存, 最大是sum 最小是-sum. 所以开个2*sum+1的数组. 

递推时, 上个可能结果或加或减当前num得到新的结果, 不同ways的数目在新结果下累计.  只有对应count大于0时才可能是上个可能结果.

起始值dp[0 + sum] = 1. 可能结果为0的不同ways数目是1. sum像个offset.

Time Complexity: O(sum*nums.length). sum是nums所有num的和.

Space: O(sum).

AC Java:

 1 class Solution {
 2     public int findTargetSumWays(int[] nums, int S) {
 3         if(nums == null || nums.length == 0){
 4             return 0;
 5         }
 6         
 7         int sum = 0;
 8         for(int num : nums){
 9             sum += num;
10         }
11         
12         if(sum < S || -sum > S){
13             return 0;
14         }
15         
16         int [] dp = new int[2*sum+1];
17         //sum相当于 offset
18         dp[0+sum] = 1; 
19         for(int num : nums){
20             int [] next = new int[2*sum+1];
21             for(int k = 0; k<2*sum+1; k++){
22                 if(dp[k] > 0){
23                     next[k+num] += dp[k];
24                     next[k-num] += dp[k];
25                 }
26             }
27             dp = next;
28         }
29         return dp[sum + S];
30     }
31 }

Method 2:

nums中一部分用的+号 相当于positive, 另一部分用的 - 号相当于negative. 分成两组.

sum(p) - sum(n) = target.

sum(p) + sum(n) + sum(p)-sum(n) = target + sum(p) + sum(n)

2*sum(p) = target + sum(nums)

相当于在nums中找有多少种subarray, subarray自身的和是(target + sum(nums))/2的问题.

subSum求解这个转化问题.

存储到当前数字得到所有结果ways数目. 为什么循环中i要从大到小呢. 这其实是dp的space compression. 跟新新的dp时会用到上一轮前面的值,所以要从后往前更新. 这样更新时保证用到的都是上轮的值.

Time Complexity: O(sum*nums.length). sum是nums所有num的和.

Space: O(sum).

AC Java:

 1 class Solution {
 2     public int findTargetSumWays(int[] nums, int S) {
 3         if(nums == null || nums.length == 0){
 4             return 0;
 5         }
 6         
 7         int sum = 0;
 8         for(int num : nums){
 9             sum += num;
10         }
11         
12         if(sum < S || -sum > S || (sum+S)%2==1){
13             return 0;
14         }
15         return subSum(nums, (sum+S)/2);
16     }
17     
18     private int subSum(int [] nums, int sum){
19         int [] dp = new int[sum+1];
20         dp[0]=1;
21         for(int num : nums){
22             for(int i = sum; i>=num; i--){
23                 dp[i] += dp[i-num];
24             }
25         }
26         return dp[sum];
27     }
28 }

类似Partition Equal Subset Sum.

转载于:https://www.cnblogs.com/Dylan-Java-NYC/p/7604773.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值