keras ConvLSTM2D 官方例子

本文介绍了一种使用卷积LSTM网络预测视频帧的方法,通过生成包含移动方块的人工视频,训练网络预测下一帧。网络由多个卷积LSTM层和批归一化层组成,最终通过卷积3D层输出预测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

""" This script demonstrates the use of a convolutional LSTM network.
This network is used to predict the next frame of an artificially
generated movie which contains moving squares.
"""
from keras.models import Sequential
from keras.layers.convolutional import Conv3D
from keras.layers.convolutional_recurrent import ConvLSTM2D
from keras.layers.normalization import BatchNormalization
import numpy as np
import pylab as plt

# We create a layer which take as input movies of shape
# (n_frames, width, height, channels) and returns a movie
# of identical shape.

seq = Sequential()
seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
                   input_shape=(None, 40, 40, 1),
                   padding='same', return_sequences=True))
seq.add(BatchNormalization())

seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
                   padding='same', return_sequences=True))
seq.add(BatchNormalization())

seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
                   padding='same', return_sequences=True))
seq.add(BatchNormalization())


seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
                   padding='same', return_sequences=True))
seq.add(BatchNormalization())

seq.add(Conv3D(filters=1, kernel_size=(3, 3, 3),
               activation='sigmoid',
               padding='same', data_format='channels_last'))
seq.compile(loss='binary_crossentropy', optimizer='adadelta')


# Artificial data generation:
# Generate movies with 3 to 7 moving squares inside.
# The squares are of shape 1x1 or 2x2 pixels,
# which move linearly over time.
# For convenience we first create movies with bigger width and height (80x80)
# and at the end we select a 40x40 window.

def generate_movies(n_samples=1200, n_frames=15):
    row = 80
    col = 80
    noisy_movies = np.zeros((n_samples, n_frames, row, col, 1), dtype=np.float)
    shifted_movies = np.zeros((n_samples, n_frames, row, col, 1),
                              dtype=np.float)

    for i in range(n_samples):
        # Add 3 to 7 moving squares
        n = np.random.randint(3, 8)

        for j in range(n):
            # Initial position
            xstart = np.random.randint(20, 60)
            ystart = np.random.randint(20, 60)
            # Direction of motion
            directionx = np.random.randint(0, 3) - 1
            directiony = np.random.randint(0, 3) - 1

            # Size of the square
            w = np.random.randint(2, 4)

            for t in range(n_frames):
                x_shift = xstart + directionx * t
                y_shift = ystart + directiony * t
                noisy_movies[i, t, x_shift - w: x_shift + w,
                             y_shift - w: y_shift + w, 0] += 1

                # Make it more robust by adding noise.
                # The idea is that if during inference,
                # the value of the pixel is not exactly one,
                # we need to train the network to be robust and still
                # consider it as a pixel belonging to a square.
                if np.random.randint(0, 2):
                    noise_f = (-1)**np.random.randint(0, 2)
                    noisy_movies[i, t,
                                 x_shift - w - 1: x_shift + w + 1,
                                 y_shift - w - 1: y_shift + w + 1,
                                 0] += noise_f * 0.1

                # Shift the ground truth by 1
                x_shift = xstart + directionx * (t + 1)
                y_shift = ystart + directiony * (t + 1)
                shifted_movies[i, t, x_shift - w: x_shift + w,
                               y_shift - w: y_shift + w, 0] += 1

    # Cut to a 40x40 window
    noisy_movies = noisy_movies[::, ::, 20:60, 20:60, ::]
    shifted_movies = shifted_movies[::, ::, 20:60, 20:60, ::]
    noisy_movies[noisy_movies >= 1] = 1
    shifted_movies[shifted_movies >= 1] = 1
    return noisy_movies, shifted_movies

# Train the network
noisy_movies, shifted_movies = generate_movies(n_samples=1200)


'''
seq.fit(noisy_movies[:1000], shifted_movies[:1000], batch_size=10,
        epochs=300, validation_split=0.05)

# Testing the network on one movie
# feed it with the first 7 positions and then
# predict the new positions
which = 1004
track = noisy_movies[which][:7, ::, ::, ::]

for j in range(16):
    new_pos = seq.predict(track[np.newaxis, ::, ::, ::, ::])
    new = new_pos[::, -1, ::, ::, ::]
    track = np.concatenate((track, new), axis=0)


# And then compare the predictions
# to the ground truth
track2 = noisy_movies[which][::, ::, ::, ::]
for i in range(15):
    fig = plt.figure(figsize=(10, 5))

    ax = fig.add_subplot(121)

    if i >= 7:
        ax.text(1, 3, 'Predictions !', fontsize=20, color='w')
    else:
        ax.text(1, 3, 'Initial trajectory', fontsize=20)

    toplot = track[i, ::, ::, 0]

    plt.imshow(toplot)
    ax = fig.add_subplot(122)
    plt.text(1, 3, 'Ground truth', fontsize=20)

    toplot = track2[i, ::, ::, 0]
    if i >= 2:
        toplot = shifted_movies[which][i - 1, ::, ::, 0]

    plt.imshow(toplot)
plt.savefig('%i_animate.png' % (i + 1))

'''

转载于:https://www.cnblogs.com/luoganttcc/p/10525245.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值