线段树(segment tree)

本文介绍了如何利用线段树技术优化查询任意矩阵子矩阵范围内的最大公约数(GCD),减少查询时间复杂度,同时保持较低的空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线段树是一棵二叉树,记为T(a, b),参数a,b表示区间[a,b],其中b-a称为区间的长度,记为L。

数据结构:
struct Node
{
    int   left,right;  //区间左右值
    Node   *leftchild;
    Node   *rightchild;    
};
线段树的建立:
Node   *build(int   l ,  int r ) //建立二叉树
{
    Node   *root = new Node;
    root->left = l;
    root->right = r;     //设置结点区间
    root->leftchild = NULL;
    root->rightchild = NULL;

    if ( l +1< r ) //L>1的情况,即不是叶子结点
    {
       int  mid = (r+l) >>1;
       root->leftchild = build ( l , mid ) ;
       root->rightchild = build ( mid  , r) ; 
    } 
    return    root; 
}
插入一条线段[c,d]:
增加一个cover的域来计算一条线段被覆盖的次数,在建立二叉树的时候应顺便把cover置0。
void  Insert(int  c, int d , Node  *root )
{
       if(c<= root->left&&d>= root->right) 
           root-> cover++;
       else 
       {
           //比较下界与左子树的上界
           if(c < (root->left+ root->right)/2 ) Insert (c,d, root->leftchild  ); 
           //比较上界与右子树的下界
           if(d > (root->left+ root->right)/2 ) Insert (c,d, root->rightchild  );
//注意,如果一个区间横跨左右儿子,那么不用担心,必定会匹配左儿子、右儿子中各一个节点
       }
}

删除一条线段[c,d]:

 

void  Delete (int c , int  d , Node  *root )
{
       if(c<= root->left&&d>= root->right) 
           root-> cover= root-> cover-1;
       else 
       {
          if(c < (root->left+ root->right)/2 ) Delete ( c,d, root->leftchild  );
          if(d > (root->left+ root->right)/2 ) Delete ( c,d, root->rightchild );
       }
}

 

QUESTION:
Given a huge N*N matrix, we need to query the GCD(greatest common divisor最大公约数) of numbers in any given submatrix range(x1,y1,x2,y2). Design a way to preprocess the matrix to accelerate the query speed. extra space should be less than O(N^2) and the preprocess time complexity should be as litte as possible.
SOLUTION:
For each row A[i] in the matrix A, we build a segment tree.The tree allows us to query GCD(A[i][a..b]) 第i行第a到b列(不包括b)的最大公约数in O(log n) time . The memory complexity of each segment tree is O(n), which gives us O(n^2) total memory complexity. 
时间复杂度,O(n2)建立线段树, O(r * log(c)) 查找,其中r and c are the number of rows and columns in the query.
GCD的实现:被除数与余数对于除数同余,所以被除数与除数的GCD就是余数与除数的GCD,所以用递归或循环求解。
int a = 45, b = 35,tmp;
while(b!=0){
a = a%b;
tmp = a;
a = b;
b = tmp;
}
cout << a << endl;

 

 

转载于:https://www.cnblogs.com/qionglouyuyu/p/4850774.html

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 在 Android 开发中,Fragment 是界面的一个模块化组件,可用于在 Activity 中灵活地添加、删除或替换。将 ListView 集成到 Fragment 中,能够实现数据的动态加载与列表形式展示,对于构建复杂且交互丰富的界面非常有帮助。本文将详细介绍如何在 Fragment 中使用 ListView。 首先,需要在 Fragment 的布局文件中添加 ListView 的 XML 定义。一个基本的 ListView 元素代码如下: 接着,创建适配器来填充 ListView 的数据。通常会使用 BaseAdapter 的子类,如 ArrayAdapter 或自定义适配器。例如,创建一个简单的 MyListAdapter,继承自 ArrayAdapter,并在构造函数中传入数据集: 在 Fragment 的 onCreateView 或 onActivityCreated 方法中,实例化 ListView 和适配器,并将适配器设置到 ListView 上: 为了提升用户体验,可以为 ListView 设置点击事件监听器: 性能优化也是关键。设置 ListView 的 android:cacheColorHint 属性可提升滚动流畅度。在 getView 方法中复用 convertView,可减少视图创建,提升性能。对于复杂需求,如异步加载数据,可使用 LoaderManager 和 CursorLoader,这能更好地管理数据加载,避免内存泄漏,支持数据变更时自动刷新。 总结来说,Fragment 中的 ListView 使用涉及布局设计、适配器创建与定制、数据绑定及事件监听。掌握这些步骤,可构建功能强大的应用。实际开发中,还需优化 ListView 性能,确保应用流畅运
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值