Conscription(POJ 3723)

本文介绍了一个关于征兵成本最小化的算法问题,并详细解释了如何通过构建无向图并利用最小生成树算法来解决该问题。文章提供了一段具体的C++代码实现。
  • 原题如下:
    Conscription
    Time Limit: 1000MS Memory Limit: 65536K
    Total Submissions: 16584 Accepted: 5764

    Description

    Windy has a country, and he wants to build an army to protect his country. He has picked up N girls and M boys and wants to collect them to be his soldiers. To collect a soldier without any privilege, he must pay 10000 RMB. There are some relationships between girls and boys and Windy can use these relationships to reduce his cost. If girl x and boy y have a relationship d and one of them has been collected, Windy can collect the other one with 10000-d RMB. Now given all the relationships between girls and boys, your assignment is to find the least amount of money Windy has to pay. Notice that only one relationship can be used when collecting one soldier.

    Input

    The first line of input is the number of test case.
    The first line of each test case contains three integers, NM and R.
    Then R lines followed, each contains three integers xiyi and di.
    There is a blank line before each test case.

    1 ≤ NM ≤ 10000
    0 ≤ R ≤ 50,000
    0 ≤ xi < N
    0 ≤ yi < M
    0 < di < 10000

    Output

    For each test case output the answer in a single line.

    Sample Input

    2
    
    5 5 8
    4 3 6831
    1 3 4583
    0 0 6592
    0 1 3063
    3 3 4975
    1 3 2049
    4 2 2104
    2 2 781
    
    5 5 10
    2 4 9820
    3 2 6236
    3 1 8864
    2 4 8326
    2 0 5156
    2 0 1463
    4 1 2439
    0 4 4373
    3 4 8889
    2 4 3133
    

    Sample Output

    71071
    54223
  • 题解:设想这样一个无向图:在征募某个人a时,如果使用了a和b之间的关系,那么就连一条a到b的边,假设这个图中存在圈,那么无论以什么顺序征募这个圈上的所有人,都会产生矛盾,即由于圈的存在,矛盾是必然的,由此可以知道,这个图应该是一片森林。反过来,给定一片森林里,必然可以使用对应的关系确定征募的顺序。综上,把人看作点,关系看作边,这个问题就可以转化为求解无向图中的最大权森林问题,最大权森林问题可以通过把所有边权取反后用最小生成树的算法求解
  • 代码:
      1 #include <cstdio>
      2 #include <queue>
      3 #include <vector>
      4 #include <algorithm>
      5 #include <cctype>
      6 #define num s-'0'
      7 
      8 using namespace std;
      9 
     10 struct edge
     11 {
     12     int u;
     13     int v;
     14     int cost;
     15 };
     16 
     17 const int MAX_V=30000;
     18 const int MAX_E=60000;
     19 const int INF=0x3f3f3f3f;
     20 int K,N, M, E, V;
     21 edge es[MAX_E];
     22 long long res;
     23 int par[MAX_V];
     24 int r[MAX_V];
     25 
     26 void kruskal();
     27 void init();
     28 int find(int);
     29 void unite(int, int);
     30 bool same(int, int);
     31 
     32 void read(int &x){
     33     char s;
     34     x=0;
     35     bool flag=0;
     36     while(!isdigit(s=getchar()))
     37         (s=='-')&&(flag=true);
     38     for(x=num;isdigit(s=getchar());x=x*10+num);
     39     (flag)&&(x=-x);
     40 }
     41 
     42 void write(int x)
     43 {
     44     if(x<0)
     45     {
     46         putchar('-');
     47         x=-x;
     48     }
     49     if(x>9)
     50         write(x/10);
     51     putchar(x%10+'0');
     52 }
     53 
     54 bool compare(const edge &e1, const edge &e2)
     55 {
     56     return e1.cost<e2.cost;
     57 }
     58 
     59 int main()
     60 {
     61     read(K);
     62     for (int j=0; j<K; j++)
     63     {
     64         res=0;
     65         read(N);read(M);read(E);V=N+M;
     66         for (int i=0; i<E; i++)
     67         {
     68             read(es[i].u);read(es[i].v);read(es[i].cost);
     69             es[i].v+=N;es[i].cost=-es[i].cost;
     70         }
     71         kruskal();
     72         write(10000*(N+M)+res);
     73         putchar('\n');
     74     }
     75 }
     76 
     77 void init()
     78 {
     79     for (int i=0; i<V; i++)
     80     {
     81         par[i]=i;
     82         r[i]=0;
     83     }
     84 }
     85 
     86 int find(int x)
     87 {
     88     if (par[x]==x) return x;
     89     return par[x]=find(par[x]);
     90 }
     91 
     92 void unite(int x, int y)
     93 {
     94     x=find(x);
     95     y=find(y);
     96     if (x==y) return;
     97     if (r[x]<r[y]) par[x]=y;
     98     else
     99     {
    100         par[y]=x;
    101         if (r[x]==r[y]) r[x]++; 
    102     } 
    103 }
    104 
    105 bool same(int x, int y)
    106 {
    107     return (find(x)==find(y));
    108 }
    109 
    110 void kruskal()
    111 {
    112     sort(es, es+E, compare);
    113     init();
    114     for (int i=0; i<E; i++)
    115     {
    116         edge e=es[i];
    117         if (!same(e.u, e.v))
    118         {
    119             unite(e.u, e.v);
    120             res+=e.cost;
    121         }
    122     }
    123 }

     

转载于:https://www.cnblogs.com/Ymir-TaoMee/p/9461698.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值