poj 1625 Censored!

本文深入探讨了信息技术领域的多个方面,包括前端开发、后端开发、移动开发、游戏开发、大数据开发、嵌入式硬件、音视频基础、测试、基础运维等。文章详细介绍了每个领域的重要技术和应用实例,旨在为读者提供全面的技术理解和实践指导。

Description

The alphabet of Freeland consists of exactly N letters. Each sentence of Freeland language (also known as Freish) consists of exactly M letters without word breaks. So, there exist exactly N^M different Freish sentences. 

But after recent election of Mr. Grass Jr. as Freeland president some words offending him were declared unprintable and all sentences containing at least one of them were forbidden. The sentence S contains a word W if W is a substring of S i.e. exists such k >= 1 that S[k] = W[1], S[k+1] = W[2], ...,S[k+len(W)-1] = W[len(W)], where k+len(W)-1 <= M and len(W) denotes length of W. Everyone who uses a forbidden sentence is to be put to jail for 10 years. 

Find out how many different sentences can be used now by freelanders without risk to be put to jail for using it. 

Input

The first line of the input file contains three integer numbers: N -- the number of letters in Freish alphabet, M -- the length of all Freish sentences and P -- the number of forbidden words (1 <= N <= 50, 1 <= M <= 50, 0 <= P <= 10). 

The second line contains exactly N different characters -- the letters of the Freish alphabet (all with ASCII code greater than 32). 

The following P lines contain forbidden words, each not longer than min(M, 10) characters, all containing only letters of Freish alphabet. 

Output

Output the only integer number -- the number of different sentences freelanders can safely use.

Sample Input

2 3 1
ab
bb

Sample Output

5

换姿势记路径
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int bi=1e4,MN=40;
char c[1000];

struct big{
    int a[MN];
    inline big(){
        memset(a,0,sizeof(a));
        a[0]=1;
    }
    inline void read(){
        register int i,j;
        scanf("%s",c);
        a[0]=(strlen(c)+3)/4;
        for (i=0;i<strlen(c);i++) j=(strlen(c)-i+3)/4,a[j]=a[j]*10+c[i]-48;
    }
    inline void pr(){
        register int i;
        printf("%d",a[a[0]]);
        for (i=a[0]-1;i;i--) printf("%04d",a[i]);
    }
    inline big operator =(int x){
        if (x==0){
            memset(a,0,sizeof(a));
            a[0]=1;
        }
        a[0]=0;
        while (x){
            a[0]++;
            a[a[0]]=x%bi;
            x/=bi;
        }
        if (!a[0]) a[0]=1;
    }
    inline big(int x){
        *this=x;
    }
    inline void gl(){
        while(!a[a[0]]&&a[0]>1) a[0]--;
    }
    inline big operator =(big x){
        register int i;
        a[0]=x.a[0];
        for (i=1;i<=a[0];i++) a[i]=x.a[i];
    }
    inline bool operator >(big y){
        if (a[0]!=y.a[0]) return a[0]>y.a[0];
        for (register int i=a[0];i;i--){
            if (a[i]!=y.a[i]) return a[i]>y.a[i];
        }
        return 0;
    }
    inline bool operator >=(const big y){
        if (a[0]!=y.a[0]) return a[0]>y.a[0];
        for (register int i=a[0];i;i--){
            if (a[i]!=y.a[i]) return a[i]>y.a[i];
        }
        return 1;
    }
    inline bool operator <(big y){
        if (a[0]!=y.a[0]) return a[0]<y.a[0];
        for (register int i=a[0];i;i--){
            if (a[i]!=y.a[i]) return a[i]<y.a[i];
        }
        return 0;
    }
    inline bool operator <=(big y){
        if (a[0]!=y.a[0]) return a[0]<y.a[0];
        for (register int i=a[0];i;i--){
            if (a[i]!=y.a[i]) return a[i]<y.a[i];
        }
        return 1;
    }
    inline bool operator ==(big y){
        if (a[0]!=y.a[0]) return 0;
        for (register int i=a[0];i;i--){
            if (a[i]!=y.a[i]) return 0;
        }
        return 1;
    }
    inline bool operator !=(big y){
        return !(*this==y);
    }
    inline bool operator ==(int y){
        big x=y;
        return *this==x;
    }
    inline bool operator !=(int y){
        return !(*this==y);
    }
    inline void swap(big &a,big &b){
        big x=a;a=b;b=x;
    }
    inline big operator +(big x){
        big r;
        if (a[0]<x.a[0]) r.a[0]=x.a[0];else r.a[0]=a[0];
        for (register int i=1;i<=r.a[0];i++) r.a[i]=a[i]+x.a[i];
        for (register int i=1;i<=r.a[0];i++)
        if (r.a[i]>=bi){
            r.a[i]-=bi;r.a[i+1]++;
            if (i==r.a[0]) r.a[0]++;
        }
        return r;
    }
    inline big operator -(big x){
        if (*this<x) swap(*this,x);
        register int i;
        big r;
        if (a[0]<x.a[0]) r.a[0]=x.a[0];else r.a[0]=a[0];
        for (i=1;i<=r.a[0];i++) r.a[i]=a[i]-x.a[i];
        for (i=1;i<=r.a[0];i++)
        if (r.a[i]<0){
            r.a[i+1]--;r.a[i]+=bi;
        }
        r.gl();
        return r;
    }
    inline big operator *(big y){
        register int i,j;
        big r;r.a[0]=a[0]+y.a[0]-1;
        for (i=1;i<=a[0];i++)
        for (j=1;j<=y.a[0];j++) r.a[i+j-1]+=a[i]*y.a[j];
        for (i=0;i<=r.a[0];i++)
        if (r.a[i]>=bi){
            r.a[i+1]+=r.a[i]/bi;
            r.a[i]%=bi;
            if (i==r.a[0]) r.a[0]++;
        }
        return r;
    }
    inline big half(){
        register int i,j;
        for (i=a[0];i>1;i--) a[i-1]+=(a[i]%2)*bi,a[i]/=2;
        a[1]/=2;
        gl();
        return *this;
    }
    inline big operator /(big y){
        register int i,j;
        big r,l,mid,rq=*this;
        r.a[0]=rq.a[0]+1;r.a[r.a[0]]=1;
        while(r>l){
            mid=(l+r+big(1)).half();
            if (mid*y<=rq) l=mid;else r=mid-big(1);
        }
        return l;
    }
    inline big operator %(big y){
        register int i,j;
        big rq=*this;
        return rq-(rq/y*y);
    }
    inline big operator ^(int y){
        big ans=1;
        big rq=*this;
        while(y){
            if (y&1) ans=ans*rq;
            y>>=1;
            rq=rq*rq;
        }
        return ans;
    }
    inline big operator ^(big y){
        big ans=1;
        big rq=*this;
        while(y!=0){
            if (y.a[1]&1) ans=ans*rq;
            y=y/2;
            rq=rq*rq;
        }
        return ans;
    }
};
const int LO=51;
int nnuu[300];
inline int f(char u){
    return nnuu[u];
}
struct tree{
    int f;
    bool w;
    int t[LO];
    int v[LO];
}t[101];
int tt,n,m,p,num=0;
char s[1000];
bool ma[105],us[105];
queue <int> q;
big dp[51][101];
inline bool dfs(int x){
    if (x==0) return 1;
    if (t[x].w) return 0;
    if (us[x]) return ma[x];
    us[x]=1;
    return ma[x]=dfs(t[x].f);
}
inline void in(){
    int p=0,l,m=strlen(s);
    for (register int i=0;i<m;i++){
        l=f(s[i]);
        if (!t[p].t[l]) t[p].t[l]=++num;
        p=t[p].t[l];
    }
    t[p].w=1;
}
inline void mafa(){
    register int i;int k,p;
    q.push(0);t[0].f=0;
    while(!q.empty()){
        k=q.front();q.pop();
        for (i=0;i<n;i++)
        if (t[k].t[i]){
            p=t[k].f;
            while((!t[p].t[i])&&p) p=t[p].f;
            t[t[k].t[i]].f=(k==p)?0:t[p].t[i];
            q.push(t[k].t[i]);
        }
    }
}
int main(){
    register int i,j,k;int u;big ans;
    while(~scanf("%d%d%d",&n,&m,&p)){
        num=0;u=0;ans=0;
           scanf("%s",s);
        for (i=0;i<n;i++) nnuu[s[i]]=i;
        for (i=1;i<=p;i++){
               scanf("%s",s);
            in();
        }
        mafa();
           for (i=0;i<=num;i++)
        ma[i]=dfs(i);
        dp[0][0]=1;
        for (i=0;i<=num;i++)
        if (ma[i])
        for (j=0;j<n;j++){
            if (!t[i].t[j]){
                u=t[i].f;
                while(!t[u].t[j]&&u)u=t[u].f;
                u=t[u].t[j];
            }else u=t[i].t[j];
            t[i].v[j]=u;
        }
        for (i=0;i<m;i++)
        for (j=0;j<=num;j++)
        if (ma[j])
        if (dp[i][j]!=0)
        for (k=0;k<n;k++)
        if (ma[t[j].v[k]]) dp[i+1][t[j].v[k]]=dp[i][j]+dp[i+1][t[j].v[k]];
        for (i=0;i<=num;i++)
        if (ma[i]) ans=ans+dp[m][i];
        ans.pr();printf("\n");
        for (i=0;i<=m;i++)
        for (j=0;j<=num;j++) dp[i][j]=0;
        for (i=0;i<=num;i++)
        for (j=0;j<n;j++) t[i].t[j]=0;
        for (i=0;i<=num;i++) t[i].w=t[i].f=0;
    }
}
View Code

 

 

转载于:https://www.cnblogs.com/Enceladus/p/5308727.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值