信号量Semaphore

信号量Semaphore


信号量Semaphore是一个控制访问多个共享资源的计数器,和CountDownLatch一样,其本质上是一个“共享锁”。

Semaphore 通常用于限制可以访问某些资源(物理或逻辑的)的线程数目。

信号量Semaphore是一个非负整数(>=1)。当一个线程想要访问某个共享资源时,它必须要先获取Semaphore,当Semaphore >0时,获取该资源并使Semaphore – 1。如果Semaphore值 = 0,则表示全部的共享资源已经被其他线程全部占用,线程必须要等待其他线程释放资源。当线程释放资源时,Semaphore则+1。

实现

其内部也是通过队列同步器实现。

abstract static class Sync extends AbstractQueuedSynchronizer
构造函数

也分为公平的信号量和不公平的信号量,其中默认的为不公平的。

public Semaphore(int permits, boolean fair) {
    sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}
public Semaphore(int permits) {
        sync = new NonfairSync(permits);
    }
主要的公共方法
//获得一个访问许可,如果没有可用资源或者被中断,则阻塞
public void acquire() throws InterruptedException {
    sync.acquireSharedInterruptibly(1);
}
//对中断不敏感
public void acquireUninterruptibly() {
    sync.acquireShared(1);
}
//再被调用的时候有资源则获取,否则返回false
public boolean tryAcquire() {
    return sync.nonfairTryAcquireShared(1) >= 0;
}
//在规定时间内且未被中断
public boolean tryAcquire(long timeout, TimeUnit unit)
    throws InterruptedException {
    return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
//释放一个资源
public void release() {
    sync.releaseShared(1);
}
//返回可用的资源数
public int availablePermits() {
    return sync.getPermits();
}
//获得并返回所有可以获得的资源数
public int drainPermits() {
    return sync.drainPermits();
}
。。。
还有三个方法就不写了
使用示例

火车站有五个停靠点,有七辆,每辆火车停2秒

package my.syn;

import java.util.concurrent.Semaphore;

/**
 * @ClassName: MyStation
 * @author: Yang.X.P
 * @date: 2018-09-18 09:22
 **/
public class MyStation {
    static Semaphore semaphore = new Semaphore(5);

    public static void main(String[] args) {
        Train train = new Train();
        for (int i = 0; i < 7; i++) {
            Thread trainThread = new Thread(train);
            trainThread.start();
        }
    }
}

class Train implements Runnable {

    @Override
    public void run() {
        if(MyStation.semaphore.availablePermits() ==0) {
            System.out.println(Thread.currentThread().getName()+"火车暂无可停靠点,正在等待" );
        }
        try {
            MyStation.semaphore.acquire();
            System.out.println(Thread.currentThread().getName()+"火车进站停2秒" );
            Thread.sleep(2000);
            System.out.println(Thread.currentThread().getName()+"火车开出停靠点" );
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        MyStation.semaphore.release();
    }
}

参考资料:

http://cmsblogs.com/?p=2263

转载于:https://www.cnblogs.com/fruitknife/p/9703148.html

<think>首先,用户的问题是:“我想了解互斥锁mutex和信号量semaphore之间的区别请问mutexsemaphore的区别及使用场景”。所以,我需要专注于解释Mutex和Semaphore的区别及使用场景。系统级指令要求:-所有行内数学表达式使用$...$格式。-独立公式使用$$...$$格式并单独成段。-LaTeX语法正确。-使用中文回答。-生成相关问题。-在回答中引用的段落末尾自然地添加引用标识,例如[^1]。-回答结构清晰,帮助用户逐步解决问题。-尽量保证回答真实可靠。参考站内引用:-[^1]:Mutex和Semaphore的目的不同,但Mutex有时被误称为binarysemaphore。-[^2]:在C#多线程中,Mutex和Semaphore是同步工具,各有特点和适用场景。-[^3]:Mutex的函数在内核中定义,包括初始化、锁定等操作。-[^4]:互斥锁信号量的定义、区别、使用,包括pthread示例。-[^5]:命名Mutex支持跨进程同步。我的回答需要基于这些引用,但不要直接复制;要自然地融入。用户的问题是区别和使用场景,所以我需要结构化地回答。回答结构:1.**介绍**:简要定义Mutex和Semaphore。2.**区别**:详细解释主要区别。-所有权:Mutex有所有者,Semaphore没有。-数:Mutex是二进制(0或1),Semaphore可以数。-使用场景:基于引用解释。3.**使用场景**:给出具体例子。4.**生成相关问题**:在末尾添加相关问题。5.**引用标识**:在引用段落末尾添加[^n]。确保使用中文。行内数学表达式:如果有数学内容,比如数,可以用$...$。例如,Semaphore数可以是$n$,但问题中没有太多数学,所以可能少用。独立公式:如果没有复杂公式,可能不需要,但如果有,单独成段。LaTeX语法正确:例如,$x^2$。现在,构建回答大纲:-开头:直接回答问题。-主体:-Mutex的定义和特点。-Semaphore的定义和特点。-关键区别:基于引用[^1]和[^4],强调目的不同。-Mutex用于互斥访问共享资源。-Semaphore用于控制访问资源的线程数。-所有权:Mutex必须由锁定它的线程解锁(引用[^4])。-数:Mutex是二进制,Semaphore可以有多个(引用[^3]和[^4])。-使用场景:-Mutex:保护临界区,如共享变量(引用[^4]示例)。-Semaphore:生产者-消费者问题,限制资源访问(引用[^2]和[^4])。-跨进程:Mutex可以命名用于跨进程(引用[^5]),Semaphore也可以但较少。-结尾:总结,并生成相关问题。生成相关问题:类似示例,3-4个问题,如:1.Mutex和Semaphore在性能上有什么差异?2.如何实现一个Semaphore?3.在分布式系统中如何使用同步机制?引用标识:在描述引用内容时添加。例如,“Mutex和Semaphore的目的不同,可能由于实现相似而被混淆[^1]。”确保回答真实可靠:基于标准知识,引用提供的信息。</think>### MutexSemaphore的区别及使用场景 Mutex(互斥锁)和Semaphore信号量)是多线程编程中常用的同步机制,用于协调线程对共享资源的访问,防止竞态条件。它们虽然表面上类似(例如,Mutex有时被误称为二进制信号量[^1]),但设目的、实现和行为有本质区别。以下我将逐步解析它们的区别,并给出典型使用场景,帮助您清晰理解。 #### 1. **基本定义核心区别** - **Mutex(互斥锁)**: - Mutex是二进制锁,状态为“锁定”或“解锁”($0$ 或 $1$),用于确保一次只有一个线程访问共享资源。Mutex具有“所有权”概念:只有锁定它的线程才能解锁它[^4]。这防止了其他线程误释放锁,从而避免死锁。例如,在Linux内核中,`mutex_lock`函数获取锁时,如果失败,线程会休眠等待[^3]。 - 数学表示:Mutex的状态可建模为二元变量 $s \in \{0, 1\}$,其中 $s=1$ 表示资源可用。 - **Semaphore信号量)**: - Semaphore一个数器,允许指定数量的线程同时访问资源(数范围 $n \geq 0$)。它没有所有权概念,任何线程都可以释放信号量信号量常用于控制资源池(如数据库连接)[^4]。例如,初始值为 $k$ 的信号量表示最多 $k$ 个线程可并发访问。 - 数学表示:信号量数 $c$ 满足 $c \geq 0$,操作基于 $P$(等待,减少数)和 $V$(发信号,增加数)原语。 关键区别总结: - **所有权**:Mutex要求锁的持有者解锁(线程绑定),而Semaphore可由任何线程释放[^4]。 - **数**:Mutex是二进制($0/1$),Semaphore支持多数($n \geq 0$)[^3][^4]。 - **目的**:Mutex专为互斥访问(保护临界区),Semaphore用于协调资源访问(如限制并发线程数)[^1][^2]。 - **实现复杂度**:Mutex通常更轻量,适合简单互斥;Semaphore更灵活,但可能引入更多开销。 #### 2. **使用场景分析** 基于实际应用,Mutex和Semaphore各有适用场景: - **Mutex的使用场景**: - **保护共享变量**:当多个线程需读写同一变量时(如数器),使用Mutex确保原子操作。例如,在C语言中: ```c pthread_mutex_t mutex; pthread_mutex_init(&mutex, NULL); pthread_mutex_lock(&mutex); // 临界区:共享变量操作,如 num++ pthread_mutex_unlock(&mutex); ``` 这防止了数据竞争[^4]。 - **跨进程同步**:命名Mutex可用于不同进程间的互斥(如C#中的`Mutex mutex = new Mutex(false, "GlobalMutex")`),适用于分布式系统资源协调[^5]。 - 典型场景:文件写入、全局配置更新。 - **Semaphore的使用场景**: - **资源池管理**:当资源有限(如线程池或数据库连接)时,Semaphore控制最大并发数。例如,初始值为$5$的信号量允许最多5个线程同时访问。 - **生产者-消费者问题**:Semaphore协调生产者和消费者线程,通过两个信号量一个表示缓冲区空位,一个表示数据项数)实现高效同步[^2][^4]。 - 典型场景:Web服务器请求处理、多线程下载。 为什么选择? - 用Mutex当需要严格互斥(如银行账户转账)。 - 用Semaphore当需允许多个线程共享资源(如打印机队列)[^2]。 #### 3. **注意事项** - **死锁风险**:Mutex的所有权特性减少了误解锁风险,但不正确使用(如嵌套锁)仍可导致死锁。Semaphore数机制在资源竞争激烈时可能引发优先级反转问题[^1]。 - **性能**:在单资源场景,Mutex通常更快(因轻量级);Semaphore在复杂协调中更高效[^3]。 - **跨平台**:Mutex(如C#的`Mutex`类)支持跨进程;Semaphore也可实现,但需额外配置[^5]。 总之,Mutex和Semaphore的核心区别在于所有权和数机制:Mutex是“独占锁”,Semaphore是“资源门”。正确选择能提升并发程序可靠性[^1][^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值