XGBoost模型的参数调优

本文介绍XGBoost算法的参数调优策略,包括添加正则项、控制决策树层数、设定叶子结点最小样本数、增加迭代次数、收缩步长与列采样,以及使用交叉验证确定最佳参数,旨在提升预测精度并防止过拟合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

XGBoost算法在实际运行的过程中,可以通过以下要点进行参数调优:

(1)添加正则项:

    在模型参数中添加正则项,或加大正则项的惩罚力度,即通过调整加权参数,从而避免模型出现过拟合的情况。

(2)控制决策树的层数:

通过叶子结点数目控制决策树的层数,视乎样本量大小决定,对于10万以下

的样本,一般在1到4之间,而针对更大的样本量,可以尝试更深的决策树层数
发掘隐藏在数据里的一些规律或模式。
(3)设定叶子结点包含的最少样本数目:

从而防止出现过小的叶子结点,降低预测
(4)增加算法迭代次数:

可有效提高训练集的预测精度,但若迭代次数过多容易造成
成过拟合
(5)通过收缩步长和列采样的方法来避免过拟合:

收缩步长即在每一次迭代的过程中,

对拟合的残差乘以一个收缩系数,从而限制当前迭代过程的学习步长;列
采样即本次迭代参与优化的特征维度并不是所有的维度,而是通过采样得到的
维度,更少的选择会让算法不容易将训练集的残差拟合得过好,从而造成过拟
合;
(6)通过交叉验证的方法:

来确定模型参数,从而达到预测准确率与防止过拟合之
间的平衡。交叉验证(Cross-validation)的本质思想是把在某种意义下将原始数
据进行分组,一部分做为训练集,另一部分做为验证集,首先用训练集对分类
器进行训练,再利用验证集来测试训练得到的模型,以此来做为评价分类器的
性能指标。常用的交叉验证方法是K折交叉验证,即将样本分为K个互不相交
的子样本,一个单独的子样本被保留作为验证模型的数据,其他K-1个样本用
来训练。交叉验证重复K次,每个子样本验证一次,平均K次的得到结果来确定最
终模型使用的参数。

转载于:https://www.cnblogs.com/ConnorShip/p/10228806.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值