根据经纬度计算地面两点间的距离-数学公式及推导

本文介绍了一种通过地球经纬度坐标计算两点间地面距离的方法。首先假设地球为正球体,利用三维直角坐标系原理,通过计算两点所在向量的夹角来获取圆弧长度,进而得出两点间的大致直线距离。

1.假设:地球是正球体。地面两点A和B的经纬度坐标分别为(Aj,Aw)和(Bj,Bw),地球半径R取平均值6371km。

2.建立三维直角坐标系:
地球球心为原点O,地轴为Z轴,北极方向为Z轴正方向,赤道平面为X轴和Y轴所在平面,在该平面上地心到零度经线的方向为X轴正方向,根据右手定则确定Y轴正方向。
设点A的三维坐标为(Ax,Ay,Az),点B的三维坐标为(Bx,By,Bz)

3.思路:
A、B、O三点所在平面与地球相交形成一个半径为R的圆,求AB间的地面距离就是求该圆上圆弧AB的长度。可由弧长等于半径乘以圆心角公式求得。
由于R是确定的,只要获得OA与OB的夹角θ就可以获得弧AB的长度。弧AB=R*θ。
角θ可通过向量公式求得:向量OA*向量OB=|OA||OB|cosθ。

cosθ=向量OA*向量OB/|OA||OB|
     =(Ax*Bx+Ay*By+Az*Bz)/R*R

4.用经纬度坐标表示三维直角坐标:
Ax=R*cosAw*cosAj
Ay=R*cosAw*sinAj
Az=R*sinAw

Bx=R*cosBw*cosBj
By=R*cosBw*sinBj
Bz=R*sinBw

代入可得
cosθ=cosAw*cosAj*cosBw*cosBj+cosAw*sinAj*cosBw*sinBj+sinAw*sinBw
     =cosAw*cosBw(cosAj*cosBj+sinAj*sinBj)+sinAw*sinBw
     =cosAw*cosBw*cos(Aj-Bj)+sinAw*sinBw
θ=arccos[cosAw*cosBw*cos(Aj-Bj)+sinAw*sinBw]

5.综上可得根据经纬度计算地面两点间距离的公式:
弧AB=R*arccos[cosAw*cosBw*cos(Aj-Bj)+sinAw*sinBw]

说明:类似的公式推导大家以前都做过,时间久了可能会忘记一些东西,于是我把它记了下来,以备查阅。
由于三角函数变换多端,该公式的表现形式不止一种,只要前提假设是一样的,那么在数学上应该是等价并可相互推导的。
在实际程序代码中用的时候需要注意单位问题,比如从定位器获得的经纬度单位是度,而三角计算的方法很可能用的单位是弧度,再比如长度单位用的是km还是m等。

转载于:https://www.cnblogs.com/chengyujia/archive/2013/01/13/2858484.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值