hdu--1018--Big Number(斯特林公式)

本文介绍了一种计算大整数阶乘位数的方法,通过取对数的方式高效解决大整数运算问题,并提供了完整的C++代码实现。

Big Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 37482    Accepted Submission(s): 18009


Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
 

 

Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 10 7 on each line.
 

 

Output
The output contains the number of digits in the factorial of the integers appearing in the input.
 

 

Sample Input
2
10
20
 

 

Sample Output
7
19
 
    Name: hdu--1018--Big N 
Copyright: ©2017 日天大帝
Author: 日天大帝 Date: 20/04/17 21:03 Description: 两种思路:1,老老实实取对数
               2,斯特林公式(Stirling's approximation)是一条用来取n的阶乘近似值的数学公式。一般来说,当n很大的时候,n阶乘的计算量十分大,所以斯特林公式十分好用,而且,即使在n很小的时候,斯特林公式的取值已经十分准确。
*/ #include<iostream> #include<cmath> using namespace std; int main(){ int n;cin>>n; while(n--){ int m;cin>>m; double ct = 0;//log10()取对数要用double存 for(int i=1; i<=m; ++i){ ct += log10((double)i); } cout<<(int)ct+1<<endl; } return 0; }

 

转载于:https://www.cnblogs.com/evidd/p/6740838.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值