HDU4219 Randomization?
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 95 Accepted Submission(s): 37
Problem Description
Random is the real life. What we see and sense everyday are absolutely randomly happened. Randomization is the process of making something random, as the nature.
Given a tree with N nodes, to be more precisely, a tree is a graph in which each pair of nodes has and only has one path. All of the edges’ length is a random integer lies in interval [0, L] with equal probability. iSea want to know the probability to form a tree, whose edges’ length are randomly generated in the given interval, and in which the path's length of every two nodes does not exceed S.
Given a tree with N nodes, to be more precisely, a tree is a graph in which each pair of nodes has and only has one path. All of the edges’ length is a random integer lies in interval [0, L] with equal probability. iSea want to know the probability to form a tree, whose edges’ length are randomly generated in the given interval, and in which the path's length of every two nodes does not exceed S.
Input
The first line contains a single integer T, indicating the number of test cases.
Each test case includes three integers N, L, S. Then N - 1 lines following, each line contains two integers Ai and Bi, describing an edge of the tree.
Technical Specification
1. 1 <= T <= 512
2. 1 <= N <= 64
3. 1 <= L <= 8, 1 <= S <= 512
4. 1 <= Ai, Bi <= N
Each test case includes three integers N, L, S. Then N - 1 lines following, each line contains two integers Ai and Bi, describing an edge of the tree.
Technical Specification
1. 1 <= T <= 512
2. 1 <= N <= 64
3. 1 <= L <= 8, 1 <= S <= 512
4. 1 <= Ai, Bi <= N
Output
For each test case, output the case number first, then the probability rounded to six fractional digits.
Sample Input
3 2 3 2 1 2 4 3 4 1 2 2 3 3 4 7 4 10 1 2 2 3 4 5 2 6 4 7 4 6
Sample Output
Case 1: 0.750000 Case 2: 0.500000 Case 3: 0.624832
Author
iSea@WHU
Source
********************************************
题目大意:给定一棵树,然后树的边权是[0,L]任意赋值,问这颗树不存在有一条链的长度超过S的概率。
代码:
/*
概率+树形dp
中等偏难题,想概率容易脑乱,静下心来想还是可以出的
dp[以i为根][以j为叶子节点到i的最远距离]
当j*2<=s的时候,表示这个子树上的最长链不可能超过s,那么
可以任意取值就是当前的概率,但是为了保证j是精确的,所以要
减去距离小于等于j-1的概率;
当j*2>s的时候,这个子树必定有且仅有一个链的长度是s,那么
枚举该链,让其他链的长度任意取值,所有情况之和就是概率
*/
#include <stdio.h>
#include <string.h>
#include <vector>
#define N 70
#define S 600
using namespace std;
int n,l,s,vis[N],fa[N];
vector<int>gra[N];
double dp[N][S];
void dfs(int d,int p)
{
vis[d]=1;fa[d]=p;
int len=gra[d].size();
if(p!=-1&&len==1)
{
dp[d][0]=1;
for(int i=1;i<=s;i++)dp[d][i]=0;
return ;
}
for(int i=0;i<len;i++)
if(!vis[gra[d][i]])dfs(gra[d][i],d);
double sum[S]={0};
for(int i=0;i<=s;i++)
{
if(i*2<=s)
{
dp[d][i]=1;
for(int j=0;j<len;j++)
{
int e=gra[d][j];
if(fa[e]!=d)continue;
double tmp=0;
for(int k=0;k<=min(l,i);k++)
for(int h=0;h<=i-k;h++)
tmp+=dp[e][h];
tmp/=(l+1);
dp[d][i]*=tmp;
}
if(i>0)dp[d][i]-=sum[i-1],sum[i]=dp[d][i]+sum[i-1];
else sum[i]=dp[d][i];
}
else
{
int op=s-i;
dp[d][i]=0;
for(int j=0;j<len;j++)
{
int e=gra[d][j];
if(fa[e]!=d)continue;
double tmp1=0;
for(int k=0;k<=min(l,op);k++)
for(int h=0;h<=op-k;h++)
tmp1+=dp[e][h];
tmp1/=(l+1);
double tmp2=0;
for(int k=0;k<=min(l,i);k++)
tmp2+=dp[e][i-k];
tmp2/=(l+1);
dp[d][i]+=sum[op]*tmp2/tmp1;
}
}
}
}
int main()
{
//freopen("/home/fatedayt/in","r",stdin);
int ncase;
scanf("%d",&ncase);
for(int u=1;u<=ncase;u++)
{
scanf("%d%d%d",&n,&l,&s);
for(int i=1;i<=n;i++)gra[i].clear();
for(int i=1;i<n;i++)
{
int a,b;
scanf("%d%d",&a,&b);
gra[a].push_back(b);
gra[b].push_back(a);
}
memset(vis,0,sizeof(vis));
dfs(1,-1);
double ans=0;
for(int i=0;i<=s;i++)ans+=dp[1][i];
printf("Case %d: %.6lf\n",u,ans);
}
}