第十节课-RNN介绍

本文介绍了RNN的基本概念及其在机器翻译、视频分类等领域的应用。重点讲解了RNN的记忆特性、计算图以及如何通过反向传播算法进行训练。此外还讨论了梯度消失与爆炸问题,并介绍了LSTM作为解决方案。

2017-08-21

这次的课程介绍了RNN的相关知识;

首先是RNN的几种模型:

分别又不同的应用场景,包括机器翻译,视频的分类。。。

RNN的解释:

主要的特点就是用到了上一个隐含状态的信息,所以RNN网络具有记忆的特性;

一个例子:Vanilla网络:

接下来是RNN的coputational graph:

特点就是W权重矩阵一直重复使用,然后就是这个图是多对多的模型,最后给出输出态之后还可以计算每个输出状态的损失loss;

接下来的部分介绍了RNN的一个例子,预测当前字符的下一个字符是什么;然后介绍了反向传播算法再RNN的一个改动,并且介绍了RNN的应用例子,比如生成一段文字,为图片生成一段文字描述,当然这个需要和CNN结合使用;

然后介绍了vanilla网络再反向传播计算梯度的时候遇到的问题,梯度爆炸和梯度消失,针对消失问题,引入了LSTM来解决:

 

转载于:https://www.cnblogs.com/robin2ML/p/7410669.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值