HDU 6199 DP 滚动数组

强行卡内存

这题在CF上好像有道极相似的题

可以想到状态设计为dp[f][i][k]表示f在取完i-1时,此时可以取k个或k+1个的状态下的最大值。之前以为n是1e5,自己想不到怎么设计状态真的辣鸡,把题目扔给队友写,实际上n是1e4,k就算不断递增最大也只有200左右,实际上是开的下的。

由于最终局面下的最优决策是固定的,所以从后往前转移。

但是人家说本来题目就too simple了,觉得你这样申请空间还是太naive,会给你MLE。

可以注意到状态i只由i+k+1或i+k转移,k范围是200左右,那么实际上对于一个i只要保存它的临近的k大小的空间就可以完成转移了,也就是滚动数组。

 

 

 

/** @Date    : 2017-09-11 17:20:25
  * @FileName: HDU 6199 1006 DP.cpp
  * @Platform: Windows
  * @Author  : Lweleth (SoungEarlf@gmail.com)
  * @Link    : https://github.com/
  * @Version : $Id$
  */
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std;

const int INF = 0x3f3f3f3f;
const int N = 2e4+20;
const double eps = 1e-8;

int dp[2][243][243];
int sum[N];
int main()
{
	int T;
	cin >> T;
	while(T--)
	{
		int n;
		scanf("%d", &n);
		sum[0] = 0;
		for(int i = 1; i <= n; i++)
		{
			scanf("%d", sum + i);
			sum[i] += sum[i - 1];
		}
		MMF(dp);
		for(int i = n; i > 0; i--)//0大
		{
			for(int k = 220; k > 0; k--)
			{
				if(i + k <= n)
				{
					dp[0][i%243][k] = max(dp[1][(i + k)%243][k], dp[1][(i + k + 1)%243][k + 1]+sum[i+k]-sum[i+k-1]);
					dp[1][i%243][k] = min(dp[0][(i + k)%243][k], dp[0][(i + k + 1)%243][k + 1]-sum[i+k]+sum[i+k-1]);
				}
				else if(i + k == n + 1)
				{
					dp[0][i%243][k] = dp[1][(i + k)%243][k];
					dp[1][i%243][k] = dp[0][(i + k)%243][k];
				}
				if(i + k <= n + 1)
				{
					dp[0][i%243][k] += (sum[i + k - 1]-sum[i - 1]);
					dp[1][i%243][k] -= (sum[i + k - 1]-sum[i - 1]);
				}

			}
			//cout << dp[0][i][1] << endl;
		}
		printf("%d\n", dp[0][1][1]);
	}
    return 0;
}

转载于:https://www.cnblogs.com/Yumesenya/p/7512195.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值