LeetCode Longest Continuous Increasing Subsequence

本文介绍了一种求解最长连续递增子序列问题的有效算法。通过遍历数组并使用计数器记录递增序列长度,该算法能在O(n)的时间复杂度内找到最长连续递增子序列的长度。

原题链接在这里:https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/

题目:

Given an unsorted array of integers, find the length of longest continuous increasing subsequence.

Example 1:

Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3. 
Even though [1,3,5,7] is also an increasing subsequence, it's not a continuous one where 5 and 7 are separated by 4. 

Example 2:

Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1. 

Note: Length of the array will not exceed 10,000.

题解:

如果当前值比前个值大就count++, 更新res. 否则count清回1.

Time Complexity: O(num.length). Space: O(1).

AC Java:

 1 class Solution {
 2     public int findLengthOfLCIS(int[] nums) {
 3         if(nums == null || nums.length == 0){
 4             return 0;
 5         }
 6         
 7         int count = 1;
 8         int res = 1;
 9         for(int i = 1; i<nums.length; i++){
10             if(nums[i] > nums[i-1]){
11                 count++;
12                 res = Math.max(res, count);
13             }else{
14                 count = 1;
15             }
16         }
17         return res;
18     }
19 }

跟上Number of Longest Increasing Subsequence.

转载于:https://www.cnblogs.com/Dylan-Java-NYC/p/7530468.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值