P3092 [USACO13NOV]没有找零No Change 状压dp

本文探讨了一个有趣的算法问题,关于如何最大化硬币剩余价值的策略。农民John需要在没有找零的情况下,通过合理选择硬币支付顺序,来实现购买一系列商品后的最大收益。文章提供了详细的解题思路和代码实现。

这个题有点意思,其实不是特别难,但是不太好想...中间用二分找最大的可买长度就行了.

题干:

题目描述
Farmer John is at the market to purchase supplies for his farm. He has in his pocket K coins (1 <= K <= 16), each with value in the range 1..100,000,000. FJ would like to make a sequence of N purchases (1 <= N <= 100,000), where the ith purchase costs c(i) units of money (1 <= c(i) <= 10,000). As he makes this sequence of purchases, he can periodically stop and pay, with a single coin, for all the purchases made since his last payment (of course, the single coin he uses must be large enough to pay for all of these). Unfortunately, the vendors at the market are completely out of change, so whenever FJ uses a coin that is larger than the amount of money he owes, he sadly receives no changes in return.
Please compute the maximum amount of money FJ can end up with after making his N purchases in sequence. Output -1 if it is impossible for FJ to make all of his purchases.
约翰到商场购物,他的钱包里有K(1 <= K <= 16)个硬币,面值的范围是1..100,000,000。
约翰想按顺序买 N个物品(1 <= N <= 100,000),第i个物品需要花费c(i)块钱,(1 <= c(i) <= 10,000)。
在依次进行的购买N个物品的过程中,约翰可以随时停下来付款,每次付款只用一个硬币,支付购买的内容是从上一次支付后开始到现在的这些所有物品(前提是该硬币足以支付这些物品的费用)。不幸的是,商场的收银机坏了,如果约翰支付的硬币面值大于所需的费用,他不会得到任何找零。
请计算出在购买完N个物品后,约翰最多剩下多少钱。如果无法完成购买,输出-1
输入输出格式
输入格式:
* Line 1: Two integers, K and N.
* Lines 2..1+K: Each line contains the amount of money of one of FJ's coins.
* Lines 2+K..1+N+K: These N lines contain the costs of FJ's intended purchases.
输出格式:
* Line 1: The maximum amount of money FJ can end up with, or -1 if FJ cannot complete all of his purchases.
输入输出样例
输入样例#1: 复制
3 6 
12 
15 
10 
6 
3 
3 
2 
3 
7 
输出样例#1: 复制
12 

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(int i = a;i <= n;i++)
#define lv(i,a,n) for(int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = 1 << 30;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
    char c;
    bool op = 0;
    while(c = getchar(), c < '0' || c > '9')
        if(c == '-') op = 1;
    x = c - '0';
    while(c = getchar(), c >= '0' && c <= '9')
        x = x * 10 + c - '0';
    if(op) x = -x;
}
template <class T>
void write(T x)
{
    if(x < 0) putchar('-'), x = -x;
    if(x >= 10) write(x / 10);
    putchar('0' + x % 10);
}
int k,n;
ll dp[1 << 17],tot = 0;
ll coin[17],cost[100010],sum[100010],ans = -1;
ll h[17];
ll find(ll lim)
{
    int le = 1,ri = n;
    int pos = 0;
    while(le <= ri)
    {
        int mid = ((le + ri) >> 1);
        if(sum[mid] <= lim)
        le = mid + 1,pos = mid;
        else
        ri = mid - 1;
    }
    return pos;
}
int main()
{
    read(k);read(n);
    duke(i,1,k)
    read(coin[i]);
    duke(i,1,n)
    read(cost[i]),sum[i] = sum[i - 1] + cost[i];
    h[1] = 1;
    duke(i,2,k)
    h[i] = h[i - 1] << 1;
    duke(p,0,(1 << k) - 1)
    {
        duke(i,1,k)
        {
            if(!(p & h[i]))
            continue;
            ll res = dp[p ^ h[i]];
            ll pos = find(sum[res] + coin[i]);
            dp[p] = max(dp[p],pos);
        }
    }
    ll cnt = 0;
    duke(i,0,(1 << k) - 1)
    {
        if(dp[i] == n)
        {
            cnt = 0;
            duke(j,1,k)
            {
                if(!(i & h[j]))
                cnt += coin[j];
            }
            ans = max(ans,cnt);
        }
    }
    printf("%lld\n",ans);
    return 0;
}

 

转载于:https://www.cnblogs.com/DukeLv/p/9718581.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值