HDOJ(HDU) 3949 XOR

本文介绍了一道关于XOR运算及其在解决特定问题中的应用的算法题目。通过对给定数值进行XOR操作,寻找第K小的可能结果。文章详细解释了线性基的概念,并提供了一个具体的实现案例。
 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 3525    Accepted Submission(s): 1212


Problem Description
XOR is a kind of bit operator, we define that as follow: for two binary base number A and B, let C=A XOR B, then for each bit of C, we can get its value by check the digit of corresponding position in A and B. And for each digit, 1 XOR 1 = 0, 1 XOR 0 = 1, 0 XOR 1 = 1, 0 XOR 0 = 0. And we simply write this operator as ^, like 3 ^ 1 = 2,4 ^ 3 = 7. XOR is an amazing operator and this is a question about XOR. We can choose several numbers and do XOR operatorion to them one by one, then we get another number. For example, if we choose 2,3 and 4, we can get 2^3^4=5. Now, you are given N numbers, and you can choose some of them(even a single number) to do XOR on them, and you can get many different numbers. Now I want you tell me which number is the K-th smallest number among them.
 

 

Input
First line of the input is a single integer T(T<=30), indicates there are T test cases.
For each test case, the first line is an integer N(1<=N<=10000), the number of numbers below. The second line contains N integers (each number is between 1 and 10^18). The third line is a number Q(1<=Q<=10000), the number of queries. The fourth line contains Q numbers(each number is between 1 and 10^18) K1,K2,......KQ.
 

 

Output
For each test case,first output Case #C: in a single line,C means the number of the test case which is from 1 to T. Then for each query, you should output a single line contains the Ki-th smallest number in them, if there are less than Ki different numbers, output -1.
 

 

Sample Input
2
2
1 2
4
1 2 3 4
3
1 2 3
5
1 2 3 4 5
 

 

Sample Output
Case #1:
1
2
3
-1
Case #2:
0
1
2
3
-1
Hint
If you choose a single number, the result you get is the number you choose.Using long long instead of int because of the result may exceed 2^31-1.
 
很模板的线性基求第k小。
只需要记录线性基中元素的个数,插入完了再改造一下线性基使得任意两位不相关。
如果线性基的元素个数<总的数的个数那么就可以异或出0.
 
code:
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
ll ci[66],n,T,now,q;
struct xxj{
    ll a[66],siz;
    ll p[66],len;
    
    void clear(){
        memset(a,0,sizeof(a));
        memset(p,0,sizeof(p));
        len=siz=0;
    }
    
    void ins(ll x){
        for(int i=60;i>=0;i--) if(x&ci[i]){
            if(!a[i]){
                a[i]=x;
                siz++;
                break;
            }
            x^=a[i];
        }
    }
    
    void update(){
        for(int i=60;i>=0;i--) if(a[i])
            for(int j=i-1;j>=0;j--) if(a[i]&ci[j]) a[i]^=a[j];
        for(int i=0;i<=60;i++) if(a[i]) p[len++]=a[i];
    }
    
    ll kth(ll k){
        if(k>=ci[len]) return -1;
        ll ans=0;
        for(int i=0;i<len;i++) if(k&ci[i]) ans^=p[i];
        return ans;
    }
    
}mine;

int main(){
    ci[0]=1;
    for(int i=1;i<=60;i++) ci[i]=ci[i-1]+ci[i-1];
    
    scanf("%lld",&T);
    for(int l=1;l<=T;l++){
        printf("Case #%d:\n",l);
        
        mine.clear();
        scanf("%lld",&n);
        for(int i=1;i<=n;i++){
            scanf("%lld",&now);
            mine.ins(now);
        }
        
        mine.update();
        
        scanf("%lld",&q);
        while(q--){
            scanf("%lld",&now);
            if(mine.siz<n) now--;
            printf("%lld\n",mine.kth(now));
        }
    }
    
    return 0;
}

 

转载于:https://www.cnblogs.com/JYYHH/p/8227495.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值