hdu4336 Card Collector

本文解决了一个经典的概率问题:为了集齐一系列卡片,需要购买多少袋零食。通过动态规划的方法求解了期望值,并提供了解题代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Card Collector

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1910    Accepted Submission(s): 888
Special Judge


Problem Description
In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, for example, if you collect all the 108 people in the famous novel Water Margin, you will win an amazing award.

As a smart boy, you notice that to win the award, you must buy much more snacks than it seems to be. To convince your friends not to waste money any more, you should find the expected number of snacks one should buy to collect a full suit of cards.
 

 

Input
The first line of each test case contains one integer N (1 <= N <= 20), indicating the number of different cards you need the collect. The second line contains N numbers p1, p2, ..., pN, (p1 + p2 + ... + pN <= 1), indicating the possibility of each card to appear in a bag of snacks.

Note there is at most one card in a bag of snacks. And it is possible that there is nothing in the bag.
 

 

Output
Output one number for each test case, indicating the expected number of bags to buy to collect all the N different cards.

You will get accepted if the difference between your answer and the standard answer is no more that 10^-4.
 

 

Sample Input
1 0.1 2 0.1 0.4
 

 

Sample Output
10.000 10.500
 

 

Source
 

 

Recommend
zhoujiaqi2010
//dp[1111] 表示 4 包都没有的期望 所以 == 0 
//4包都没有,我们可以拿一包,就会变成dp[0111] , dp[1011] , dp[1101] , dp[1110]
// 所以dp[0111] = (1+dp[1111]*p[0])/p[0] ; ( +1 是因为拿了一包)
//类似的 dp[01010] 等 可以由他那位为 0 补上 1 转移而来 
//最后答案就是 dp[000..] 

#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn (1<<21)
using namespace std ;

double dp[maxn] , p[23];

int main()
{
    int i , n , j , k ;
    double sum , m ;
    while( cin >> n )
    {
        for( i = 0 ; i < n ;i++ )
            scanf("%lf",&p[i]) ;
        dp[(1<<n)-1] = 0 ;
        for( i = (1<<n)-2 ; i >= 0 ;i-- )
        {
            dp[i] = 1.0 ;
            sum = 0.0;
            for( j = 0 ; j < n ;j++ )
                if(!(i&(1<<j)))
            {
                dp[i] += dp[i|(1<<j)]*p[j] ;
                sum += p[j] ;
            }
            dp[i] /= sum ;
        }
        printf("%lf\n",dp[0]) ;
    }
}

 

转载于:https://www.cnblogs.com/20120125llcai/p/3376547.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值