2015 Multi-University Training Contest 3 hdu 5324 Boring Class

本文介绍了一道名为BoringClass的问题,通过CDQ分治算法解决最长子序列的寻找问题。具体包括输入输出格式、样例及解析,并附上了完整的C++代码实现。

Boring Class

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 900    Accepted Submission(s): 247


Problem Description

Mr. Zstu and Mr. Hdu are taking a boring class , Mr. Zstu comes up with a problem to kill time, Mr. Hdu thinks it’s too easy, he solved it very quickly, what about you guys?
Here is the problem:
Give you two sequences L1,L2,...,Ln and R1,R2,...,Rn.
Your task is to find a longest subsequence v1,v2,...vm satisfies
v1≥1,vm≤n,vi<vi+1 .(for i from 1 to m - 1)
Lvi≥Lvi+1,Rvi≤Rvi+1(for i from 1 to m - 1)
If there are many longest subsequence satisfy the condition, output the sequence which has the smallest lexicographic order.

 

Input
There are several test cases, each test case begins with an integer n.
1≤n≤50000
Both of the following two lines contain n integers describe the two sequences.
1≤Li,Ri≤109

 

Output
For each test case ,output the an integer m indicates the length of the longest subsequence as described.
Output m integers in the next line.
 
Sample Input
5
5 4 3 2 1
6 7 8 9 10
2
1 2
3 4
 

Sample Output
5
1 2 3 4 5
1
1
 

Author
ZSTU
 

Source

 解题:CDQ分治

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 const int maxn = 200010;
 4 struct Node {
 5     int l,r,id;
 6     bool operator<(const Node &t) const {
 7         if(r != t.r) return r < t.r;
 8         if(l != t.l) return l > t.l;
 9         return id < t.id;
10     }
11 } P[maxn],A[maxn],B[maxn];
12 int n,tot,Li[maxn],C[maxn],dp[maxn];
13 void update(int i,int val) {
14     for(; i <= tot; i += i&(-i))
15         C[i] = max(C[i],val);
16 }
17 void clr(int i) {
18     for(; i <= tot; i += i&(-i)) C[i] = 0;
19 }
20 int query(int i) {
21     int ret = 0;
22     for(; i > 0; i -= i&(-i)) ret = max(ret,C[i]);
23     return ret;
24 }
25 void cdq(int L,int R) {
26     if(L == R) {
27         dp[P[L].id] = max(dp[P[L].id],1);
28         return;
29     }
30     int mid = (L + R)>>1;
31     cdq(mid+1,R);
32     int a = 0,b = 0;
33     for(int i = L; i <= mid; ++i) A[a++] = P[i];
34     for(int i = mid+1; i <= R; ++i) B[b++] = P[i];
35     sort(A,A+a);
36     sort(B,B+b);
37     int j = b-1;
38     for(int i = a-1; i >= 0; --i) {
39         for(; j >= 0 && B[j].r >= A[i].r; --j)
40             update(B[j].l,dp[B[j].id]);
41         dp[A[i].id] = max(dp[A[i].id],query(A[i].l) + 1);
42     }
43     for(int i = 0; i < b; ++i) clr(B[i].l);
44     cdq(L,mid);
45 }
46 int main() {
47     while(~scanf("%d",&n)) {
48         memset(dp,0,sizeof dp);
49         memset(C,0,sizeof C);
50         for(int i = tot = 0; i < n; ++i) {
51             scanf("%d",&P[i].l);
52             P[i].id = i;
53             Li[tot++] = P[i].l;
54         }
55         for(int i = 0; i < n; ++i) {
56             scanf("%d",&P[i].r);
57             Li[tot++] = P[i].r;
58         }
59         sort(Li,Li + tot);
60         tot = unique(Li, Li + tot) - Li;
61         for(int i = 0; i < n; ++i) {
62             P[i].l = lower_bound(Li,Li+tot,P[i].l) - Li + 1;
63             P[i].r = lower_bound(Li,Li+tot,P[i].r) - Li + 1;
64         }
65         cdq(0,n-1);
66         int ret = 0,pre = -1;
67         for(int i = 0; i < n; ++i) ret = max(ret,dp[i]);
68         printf("%d\n",ret);
69         for(int i = 0; i < n; ++i) {
70             if(dp[i] == ret && (pre == -1 || P[i].l <= P[pre].l && P[i].r >= P[pre].r)) {
71                 if(pre != -1) putchar(' ');
72                 printf("%d",1 + i);
73                 --ret;
74                 pre = i;
75             }
76         }
77         puts("");
78     }
79     return 0;
80 }
View Code

 

转载于:https://www.cnblogs.com/crackpotisback/p/4725636.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值